
Knowledge Required for Understanding Task-Oriented Instructions

Muneo Kitajima, National Institute of Bioscience and Human-Technology
kitajima@nibh.go.jp

Peter G. Polson, Institute of Cognitive Science University of Colorado
ppolson@psych.colorado.edu

Abstract
When they encounter problems with a novel or
infrequently performed task, experienced users often
complete their work by referring to manuals and trying
task-oriented exploration. However, the contents of the
documentation can vary from step-by-step instructions
for a single task to generic descriptions of a family of
related procedures. This paper describes the LInked
model of Comprehension-based Action planning and
Instruction taking (LICAI) that simulates the processes
involved in comprehending and using realistic task-
oriented instructions. The simulations describe the
necessary relationships among the content of the
instructions, the goal, and the interface that enable
users to accomplish their tasks.

1 Introduction

This paper presents a theoretical analysis of the
knowledge required to make effective use of
documentation to accomplish novel tasks with a familiar
application or any task using a new application. We
assume an individual is an experienced user of the host
operating system (e.g., Macintosh or Windows 95) and
that he or she has the necessary background knowledge
of the application domain.

The example task used in our analysis is ÔHide the
LegendÕ of a data graph. The user is preparing a graph
using an application like Cricket Graph III, Delta Graph
Pro, or EXCEL. She has created the graph and is editing
it to achieve specific design goals. During the editing
process, she formulates the goal ÔHide the Legend.Õ She
has never done this task before.

Rieman[7] conducted a diary study that investigated
how people handle such situations in ordinary job
settings. The participants in his study recorded their
problems and how they dealt with them for one week.
Rieman reported that the typical way to handle this
situation was to get hints and then try to perform the
task by exploration. The sources of hints were diverse:
paper documentation, on-line help, or more experienced
colleagues. Another option for users is to first attempt to
perform the task by exploration. However, Rieman found
that participants were less successful with this approach.

We selected the Hide Legend task as an example task
because Rodriguez [8] found that both experienced and
novice participants cannot perform this task using
Cricket Graph III without getting additional information.
Thus, this task is a good model for the problem solution
episodes studied by Rieman [7].

The analysis presented in this paper assumes the
following: a user has formulated a goal, Òperform Ôhide
legendÕÓ, instructions on how to perform tasks are in the
manual, and the user has located the description for the
task in the documentation.

In an informal survey of the documentation for various
graphics applications, we discovered that descriptions of
the action sequence necessary to perform a task come in
many forms. The goal of this paper is to carry out
analyses of the processes involved and knowledge
required to comprehend these different forms of
instructions and perform the task.

The LInked model of Comprehension-based Action
planning and Instruction taking (LICAI1) [5] was used
in these analyses. This model simulates the processes
involved in comprehending instructions and generating
the actions required to perform a task. The processes are
implemented in Mathematica programs.

2 Different Forms of Instructions

Our analysis of instruction types is based on LICAIÕs
assumptions of the requirements for successful action
planning. The model assumes that the representation of a
large format display can contain over a hundred screen
objects (e.g., icons, menus, application objects like
titles and legends, the contents of individual cells in a
spreadsheet). The action is a description of one of the
admissible actions on the interface (e.g., type, click,
press and hold). A user must extract appropriate
objectÐaction descriptions from the instructional text
and/or generate a correctly ordered sequence of these
descriptions.

1 When LICAI is pronounced [li kai], the pronunciation

represents a two-kanji Japanese word, , meaning
Ôcomprehension.Õ

Successfully performing a novel task with the aid of
instructions requires them to be translated into a
representation of the correct action sequence. First, object
descriptions must be recognized and translated into the
specifications that uniquely identify corresponding screen
objects. Second, action descriptions (e.g., turn off,
choose) must be translated into possible actions on the
interface.

These mappings are not trivial. For example, users
must understand the vocabulary of the application
domain (e.g., title, legend, x-axis label) and identify
corresponding screen objects. Another complication is
that a single sentence may contain multiple
objectÐaction pairs that must be properly sequenced.

We identified four cases that define the processes
involved in following procedural instructions. They vary
on two dimensions:

(1) the level of detail ranging from step-by-step
instructions to texts that guide exploration without
specifying the action sequence;

(2) the level of difficulty involved in selecting and
sequencing multiple objectÐaction representations.

Examples are shown in Figure 1.
Some instructional texts describe how to do a single

task. Case I represents simple, detailed step-by-step
instructions. Each step is described in a single sentence
that specifies a screen object and one action on that
object.

Case II represents complex, detailed step-by-step
instructions. Multiple steps are described in a single
sentence, and individual steps may refer to objects that
will not appear on the screen until previous steps have
been correctly executed. For example, ÔChoose Show
Graph ItemsÉ from the Options menuÕ is the second
and third steps of the Case I instructions. Note that the
first phrase, ÔChoose Show Graph ItemsÉ,Õ specifies an
action on an object that is not yet on the screen.

Case III is a text that gives step-by-step instructions
for a generic procedure from a family of related tasks. The
text describes how to show or hide graph components
including the graph title, the legend, and so forth. The
LICAI model generates a version of the Case I
instructions from this text to specify the correct action
sequence.

Case IV is a text that describes a related collection of
tasks on changing the legend. However, the information
given does not include complete step-by-step
instructions for any task. These instructions support
learning by exploration. Kitajima and Polson [4][5] have
analyzed the conditions in which users can successfully
perform a task by exploration.

The focus of this paper is to show how the LICAI
model can extract the steps required to perform the Hide
Legend task for Cases I, II, and III, and to discuss
qualitative differences in their performance.

3 The LICAI Model

The LICAI model was developed originally by
Kitajima and Polson [5] to account for a variant of Case
IV. In the following sections, we first describe the
cognitive architecture on which the LICAI model is
built, and then explains very briefly about the model.
See Kitajima and Polson [4][5] for thorough description.

3.1 The ConstructionÐIntegration
Architecture

LICAI is a comprehension-based model of instruction
following and exploration. The cognitive processes
specified in LICAI are implemented using the
constructionÐintegration (C-I) architecture developed by
Kintsch [1][2], which has been applied successfully to
model cognitive processes involved in text

Case I
Step1. Select the graph.
Step2. Pull down the Options menu.
Step3. Select Show Graph Items… menu item.
Step4. Click the check box labeled ‘Legend.’
Step5. Click on the button labeled ‘OK.’

Case II
Step1. Select the graph.
Step2. Choose Show Graph Items from the Options

menu.
Step3. Turn off the Legend check box.
Step4. Click OK.

Case III
Step1. Select a graph object.
Step2. Choose Show Graph Items from the Options

menu.
Step3. Turn on check boxes for graph components

you want to display, or turn off check boxes for
components you want to hide.

Step4. Click OK to turn to the active graph window.

Case IV
 Using Legends in Your Chart

A Legend is a combination of text and graphics used
to associate additional data to the chart. Depending
on the type of chart you have plotted, some charts
may appear with or without a legend. Row and
column labels in the Data page determine the legend
labels. The “Legend…” command allows you to add
to or remove chart legends. You can also reverse
the direction of the data within the legend and also
change the legend for any overlay charts.

Figure 1. Four versions of instructions for the Hide
Legend task. Steps for Case III are adapted from CA-
Cricket Graph III User Guide for Macintosh. Text for
Case IV is adapted from DELTAGRAPH USER’S GUIDE
4.0.

comprehension [1], word problem solving [1], and
action planning [3][6].

In the construction phase, a C-I cycle generates a
connectionist network that represents alternative
meanings of a sentence or alternative actions that can be
performed on a given step in a computer-based task, and
the knowledge necessary to select among the
alternatives. The integration phase uses spreading
activation to implement a constraint satisfaction process
that selects a contextually appropriate alternative
consistent with the usersÕ goals. The nodes in the
network are propositions. Links in the network are
established by common arguments of propositions; when
two nodes share a common argument, they are
connected. The constraint satisfaction process is
controlled by the pattern of interconnections.

3.2 Comprehending Hints

Kitajima and Polson [5] describe in detail the
processes in LICAI that simulate comprehension of hints
like ÒPull down the Options menu.Ó This hint specifies
actions to be performed on an object on the screen.
LICAI transforms the propositional representation of the
hint into a representation that controls the action
planning process, a do-it goal. LICAI requires that a
successful do-it goal should have direct links to the
representation of the correct object on the screen. This
means that a hint like ÒPull down the Application
menuÓ would not be as effective as the hint like ÒPull
down the Options menuÓ because the former requires
users of additional knowledge to associate Òthe
Application menuÓ with the icon that appears on the top-
right corner of the Macintosh desktop.

3.2.1Goal Formation. Representations of do-it goals
determine the effectiveness of hints. This section
describes in detail how LICAI generates the do-it goals
from the instructions.

LICAI assumes that the user processes each
instruction sentence-by-sentence. The instruction
comprehension process takes a propositional
representation of each sentence and generates goals of the
form,

PERFORM [ACTION, OBJECT] or
PERFORM [$, OBJECT]

where $ is a place holder for an ACTION that will have to
be inferred by the action planning process. (Note that
variables are represented in capital italics, like OBJECT.)

LICAI assumes that the instruction comprehension
process is analogous to KintschÕs [1] model for solving
word problems, which describes reading as a strategic
process [9] and assumes that strategies generate
inferences required to guide problem solving. The
knowledge used by the strategies is represented as
comprehension schemata. The instruction
comprehension process in LICAI takes a semantic

representation of the instructions as input and elaborates
this representation with inferences generated by
comprehension schemata to construct goals.

LICAI incorporates three kinds of comprehension
schemata. Global instruction reading schemata represent
the top-level strategy used by a reader to process text.
All verbs with the implicit subject YOU are mapped into
a text base proposition in the form DO [YOU, VERB,
OBJECT].

Task-domain schemata elaborate DO propositions and
generate a more complete description of a task. Goal
formation schemata transform DO propositions into
propositions that represent goals.

The simulations described in this paper focus on the
processes that operate after the instructional text has been
transformed into a propositional representation, i.e. the
text base, and the global instruction reading schema has
been applied to transform all propositions of the form,
VERB [OBJECT] into the form DO [YOU, VERB,
OBJECT].

While comprehending step-by-step instructions,
LICAI applies do-it schemata to generate do-it goals by
elaborating propositions of the form DO [YOU, VERB,
OBJECT] in the original instruction text. Do-it schemata
elaborate propositions to perform a specific action on a
screen object. When VERB in propositions of the form
DO [YOU, VERB, OBJECT] is a DEVICE-ACTION like
select, choose, pull down, click, drag, or release, the do-
it schema elaborates such propositions into propositions
representing do-it goals.

The do-it schema has the following form:

Do-It Schema I:

IF (DO [YOU, VERB, OBJECT] &
ISA [VERB, DEVICE-ACTION]) 

PERFORM [VERB, OBJECT, a list of specifications]

For example, in Case I, the description for the second
step ÔPull down the Options menuÕ is represented as a
set of propositions:

DO [YOU, PULL DOWN, $]
ISA [$, MENU]
HAS-LABEL [$, Options]

$ is a place holder that indicates a screen object yet to be
identified. The first proposition triggers application of
Do-It Schema I, generating the following do-it goal:

PERFORM [PULL DOWN, $,
ISA [$, MENU], HAS-LABEL [$, Options]]

Sometimes Ôpull downÕ may be replaced with a
representation of general actions (e.g., Ôact onÕ) that do
not directly indicate device actions, whereas a screen
object is indicated. Another version of the do-it schema
exists for these cases:

Do-It Schema II:

IF (HAS-LABEL [OBJECT, LABEL]) 
PERFORM [$, OBJECT,
HAS-LABEL [OBJECT, LABEL],
a list of specifications]

For example, Step 2 in Case I specifies the label of a
screen object Options to be acted on. Thus, Do-It
Schema II can be applied to generate the following do-it
goal:

PERFORM [PULL DOWN, $,
HAS-LABEL [$, Options], ISA [$, MENU]]

4 Simulation: Following Task-Oriented
Instructions

We describe how the LICAI model simulates users
who follow task-oriented instructions that are given in
various forms aiming at supporting the hide legend task.
We focus on the representation of do-it goals that LICAI
generates and discuss their appropriateness for
controlling LICAIÕs action planning process.

4.1 Simulation of Case I

In Case I, each sentence describes a single step, the
interface action is described using the most common
verb, and the target of the action is specified completely.

The do-it goal for Step 1 is generated by applying
Do-It Schema I:

PERFORM [SELECT, $, ISA [$, GRAPH]] Step 1

Steps 2 through 5 specify the labels of the screen
objects to be acted on. Thus, Do-It Schema II can be
applied to generate the following do-it goals for each
step:

PERFORM [PULL DOWN, $,
HAS-LABEL [$, Options], ISA [$, MENU]] Step 2

PERFORM [CHOOSE, $,
HAS-LABEL [$, Show Graph Items…],
ISA [$, MENU-ITEM]] Step 3

PERFORM [CLICK, $,
HAS-LABEL [$, Legend],
ISA [$, CHECK-BOX] Step 4

PERFORM [CLICK, $,
HAS-LABEL [$, OK], ISA [$, BUTTON]] Step 5

In the action planning process, each do-it goal is
performed on the following displays: the graph on the
screen (Step 1), the Options menu item (Step 2), Show
Graph ItemsÉ on the pulled down menu (Step 3), and
the dialog box shown by Figure 2 (Steps 4 and 5). The
representations of each do-it goal are linked to the correct
screen object and action, and the action planning process
will attend to the correct screen object and select the

correct objectÐaction pair. However, following
instructions like ÔPull down the Options menuÕ (Step 2)
involves significant inferences. For example, Ôpull
downÕ must be mapped onto the action Ôpress and holdÕ
the mouse button on the required screen object. The
screen object must be pointed at by the mouse cursor.
This condition is satisfied by the action planning
process.

Thus, following instructions in Case I is predicted by
LICAI to be straightforward if users have the necessary
background knowledge to generate these do-it goals, and
if they correctly alternate sentence-by-sentence instruction
reading and action planning.

4.2 Simulation of Case II

In Case II, steps 2 and 3 in Case I are combined, the
two objectÐaction pairs are out of order, and the verb
Ôpull downÕ is missing from the surface structure of the
sentence. However, Case II can be reduced to Case I
when appropriate task-domain schemata are available:
Step 2 requires a schema that transforms Ôchoose X from
Y-menuÕ into Ôpull down Y-menuÕ followed by Ôselect
XÕ; Step 3 requires a comprehension schema to equate
Ôturn off Z check boxÕ with Ôpoint and click the marked
check box labeled by Z .Õ Rodriguez [8] showed that his
participants had no difficulty in following Steps 2 and 3
of Case II suggesting the existence of the required
knowledge.

4.3 Simulation of Case III

The key difference between the Case III text and the
Cases I and II texts is that Case III is not written for a
single task. This text describes a class of tasks that have
the common effect on a class of application objects. In
our particular example, the effects are ÔhideÕ or Ôshow.Õ
The objects to be effected are Ôgraph items.Õ

The instruction comprehension process requires
additional knowledge about the graph domain to make
the do-it schemata applicable. For example, the text for

Figure 2. The dialog box for ‘Show Graph Items.’

Step 1, ÔSelect a graph object,Õ requires understanding
what the phrase Ôgraph objectÕ refers to. A do-it goal
might have been generated by Do-It I without such an
understanding. But this do-it goal would not be useful
because the necessary link to the correct screen object
does not exist.

The CA-Cricket Graph III Users Guide for Macintosh
lists possible graph objects or graph components:

1) graph-title,
2) graph-frame,
3) plot-frame,
4) legend,
5) plot-element,
6) horizontal-tick-marks,
7) horizontal-axis-tick-labels,
8) horizontal-axis,
9) vertical-tick-marks,
10) vertical-axis-tick-labels,
11) vertical-axis-title,
12) vertical-axis.

We assume that this knowledge is stored in long-
term memory and is retrieved when Step 1 of Case III is
elaborated. The same knowledge is required to
comprehend the term Ôgraph componentsÕ in Step 3.
This elaboration process is controlled by a probabilistic
memory retrieval process [1][3].

We describe a simulation of the instruction
comprehension process of Case III by showing how the
task-domain knowledge shown above is incorporated
into the network in the construction phase and how the
retrieved knowledge is used to generate do-it goals. The
propositional representation of Step 1 of Case III is as
follows:

DO [YOU, SELECT, $],
ISA [$, GRAPH-OBJECT].

The probabilistic memory retrieval process uses links
between the text propositions and proposition stored in
long-term memory. The argument GRAPH-OBJECT
links to

MADE-UP-OF[GRAPH-OBJECT,GRAPH-COMPONENTS],

which in turn links to each of the 12 specific descriptions
of the graph components, for example,

ISA [GRAPH-TITLE, GRAPH-COMPONENTS],
…
ISA [LEGEND, GRAPH-COMPONENTS],
…

The text base elaborated by retrieving relevant
knowledge can include the inferences shown above. This
elaborated text base is then augmented by Do-It Schema
I. LICAI can generate up to 12 do-it goals, one for each
graph component. Each proposition describing a
component retrieved from long-term memory combined
with DO [YOU, SELECT, $] through the link ISA [$,
GRAPH-OBJECT] via MADE-UP-OF [GRAPH-OBJECT,

GRAPH-COMPONENTS] to generate a do-it goal
specifying selection (single clicking) of that graph
component. Thus, the model could generate from 1 to
12 do-it goals.

However, the critical inference for the Hide Legend
task, ISA [LEGEND, GRAPH-COMPONENTS], is more
likely to be retrieved from long-term memory because of
its link to the task goal, PERFORM [HIDE, LEGEND].
Thus, it is likely that the correct do-it goal given below
will be generated during the instruction comprehension
process:

PERFORM [SELECT, $,
ISA [$, GRAPH-OBJECT],
MADE-UP-OF [GRAPH-OBJECT,

GRAPH-COMPONENTS],
ISA [LEGEND GRAPH-COMPONENTS]]

When multiple do-it goals are generated, LICAI must
the goal-selection process that selects one of these as the
goal for action planning process when the initial task
display appears. In this process, the task goal,
PERFORM [HIDE, LEGEND], also plays a major role,
providing additional links to the do-it goal.

5 Discussion

LICAI enables us to define a continuum of texts
describing procedures ranging from simple step-by-step
instructions (Case I) to instructions that support
exploration (Case IV). In each case, LICAI describes
constraints on the vocabulary used in the text, the details
of the interface, and necessary background knowledge
that must be satisfied to support successful execution of a
task.

Case I instructions are robust if the text satisfies some
obvious constraints. Readers must have the background
knowledge necessary to transform action descriptions
(e.g., pull down, choose) into possible actions on the
interface (e.g., click, press and hold). It is reasonable to
assume that this is the kind of knowledge acquired when
the user is learning basic interaction skills. Readers must
also be able to identify the screen objects described in
the text. They must know the vocabulary used to
describe various categories of screen objects like menu,
menu items, and the like as well as understand the
vocabulary of the application domain (e.g., title, legend,
x-axis label). Labels on screen objects and information
on the identity of objects retrieved form the necessary
links between the text representation and the
representations of objects and actions.

However, Case I makes strong assumptions about the
coordination of the reading and action planning
processes. The user is assumed to read one sentence,
perform the described action on the specified object, and
then continue reading the next sentence. In addition, a
user could have trouble if they read several sentences and
then try to perform the task. The sequence of do-it goals

would have to be retrieved in the correct order and
remembered correctly.

Case II instructions are also robust if readers have the
necessary background knowledge, although they must
understand a wider range of vocabulary describing
actions and objects. However, the major complication is
dealing with sentences that describe multiple steps.
Specialized task-domain schema must infer missing
elements in the text and the multiple do-it goals must be
stored in working memory and retrieved in the correct
order by the application displays.

Case III is obviously the most interesting from both
the point of view of the model as well as usability
considerations.

The instructions for Case III have a phrase in Step 1,
Ôgraph object,Õ and a phrase in Step 3, Ôgraph
components,Õ that effectively function as variables that
must be bound to the correct object, the legend. The
bottom-up nature of the construction process causes
LICAI to consider multiple bindings for these variables.
The model selects the do-it goal with correct binding
because of the presence of the task-goal PERFORM
[HIDE, LEGEND].

Kitajima and Polson [4][5] did an analysis of Case
IV. They found that the userÕs task goal must link to the
screen object that must be acted on to successfully
perform the task. Thus, if the interface had a Hide menu
that presented a Legend menu item, step-by-step
instructions would be unnecessary. The links to the
screen object labels ÔHideÕ and ÔLegendÕ would enable
action planning process to perform the task because of
the links to the task goal PERFORM [HIDE, LEGEND].

6 Conclusions

We performed analyses of three versions of
instructions for the Hide Legend task using the LICAI
model. In each case, we described the relationship that
must hold between the userÕs representations of the
instructions, the display, and the action required to
perform the task. Step-by-step instructions generate a
sequence of do-it goals, each of which described an
object on the screen and action. The most basic

requirement is that the user must understand the
vocabulary used to describe the object and actions in
order to map them onto interface actions and descriptions
of objects on the screen.

A basic prediction of the LICAI model is that Case III
instructions require specialized task-domain knowledge
to bind generic terms to specific items that are related to
the current task. This causes the instruction
comprehension process to generate multiple
interpretations of the instruction text and that the task
goal is critical in selecting the correct do-it goal.

7 References

[1] Kintsch, W. (1988). The role of knowledge in discourse
comprehension: A constructionÐintegration model.
Psychological Review, 95, 163Ð182.

[2] Kintsch, W. (1998). Comprehension: A Paradigm for
Cognition. Cambridge: Cambridge University Press.

[3] Kitajima, M., and Polson, P. G. (1995). A
comprehension-based model of correct performance and
errors in skilled, display-based humanÐcomputer
interaction. International Journal o f
HumanÐComputer Systems, 43, 65Ð99.

[4] Kitajima, M., and Polson, P. G. (1996). A
comprehension-based model of exploration. In
Proceedings of human factors in computing systems
CHI Õ96 (pp. 324Ð331). New York: ACM.

[5] Kitajima, M., and Polson, P. G. (1997). A
comprehension-based model of exploration. Human-
Computer Interaction, 12, 345-389.

[6] Mannes, S. M., & Kintsch, W. (1991). Routine
computing tasks: Planning as understanding. Cognitive
Science, 15, 305Ð342.

[7] Rieman, J. (1996). A field study of exploratory learning
strategies. ACM Transactions on ComputerÐHuman
Interaction., 3, 189-218.

[8] Rodriguez, M. (1997). A detailed analysis of exploratory
behavior of new users of a graphics application.
Technical Report in preparation. Institute of Cognitive
Science. University of Colorado, Boulder.

[9] van Dijk, T. A., & Kintsch, W. (1983). Strategies o f
discourse comprehension. New York: Academic Press.

