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Abstract
The Cognitive Walkthrough for the Web (CWW) is a
partially automated usability evaluation method for
identifying and repairing website navigation problems.
Building on five earlier experiments [2,4], we first
conducted two new experiments to create a sufficiently
large dataset for multiple regression analysis. Then we
devised automatable problem-identification rules and used
multiple regression analysis on that large dataset to develop
a new CWW formula for accurately predicting problem
severity. We then conducted a third experiment to test the
prediction formula and refined CWW against an
independent dataset, resulting in full cross-validation of the
formula. We conclude that CWW has high psychological
validity, because CWW gives us (a) accurate measures of
problem severity, (b) high success rates for repairs of
identified problems (c) high hit rates and low false alarms
for identifying problems, and (d) high rates of correct
rejections and low rates of misses for identifying non-
problems.

Categories and Subject Descriptors: H.5.2
[Information Interfaces and Presentation (e.g., HCI)]: User
Interfaces – Evaluation/methodology, Theory and methods,
User-centered design; H.5.4 [Information Interfaces and
Presentation (e.g., HCI)]: Hypertext/Hypermedia –
Navigation, Architectures, Theory, User issues; H.1.2.
[Models and Principles]: User/Machine Systems – Human
information processing, Human factors;

General Terms: Design, Theory; Verification, Experi-
mentation; Performance; Measurement; Human Factors

Keywords: Cognitive Walkthrough for the Web, CWW,
CoLiDeS, cognitive model, user model, Latent Semantic
Analysis, LSA, usability problems, repairs, usability
evaluation method, information scent, heading labels, link
labels

INTRODUCTION
This paper focuses on significant advances in the
development of the Cognitive Walkthrough for the Web
(CWW) [1,3,4]. CWW is a usability evaluation method
(UEM) that identifies and repairs problems hindering
successful navigation of large, complex websites. Our first
paper on CWW [4] described how we transformed the
original Cognitive Walkthrough [26] to create CWW and
validated the CWW problem-identification process against
data from three experiments. Our second paper [3] reported
two additional experiments that demonstrated the
effectiveness of CWW-guided repairs for improving user
performance.
In the work reported here we have taken two large steps
forward. First, we have developed a method for calibrating
the severity of the usability problems identified by CWW.
Our new measure of problem severity is the predicted mean
total clicks that users will make to accomplish a particular
task on a specific webpage. We could equally well describe
our measure of problem severity as a measure of task
dif f iculty  that is based on a principled theory and
computational model of differences in task difficulty. This
prediction formula is applicable to any task. It isolates
particular factors that can cause any task to be more
difficult, identifies which of the factors are contributing to
the difficulty of each particular task, determines what
amount of difficulty each factor contributes to the overall
measure of difficulty, and sums these contributions to
produce the predicted mean total clicks.
Second, we have increased the level of automation for
CWW and paved the way for its full automation. The more
automated ACWW interface and tutorial are available at
http://autocww.colorado.edu/~brownr/ACWW.php> and
<http://autocww.colorado.edu/~brownr/>. The new ACWW
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interface cuts time to perform CWW analyses to about one-
sixth of the time it takes to perform the same CWW
analyses at <http://autocww.colorado.edu>.
Practitioners and researchers can confidently use our
predicted mean total clicks measure of problem severity.
We demonstrate that the CWW problem severity measure is
both reliable and psychologically valid. We rigorously
evaluate the accuracy of the predicted mean total clicks,
adhering to the rigorous standards for assessing usability
evaluation methods (UEMs) that have been advocated by
Gray and Salzman [9,10] and Hertzum and Jacobsen [11].
The work reported here required three experiments beyond
those reported in our first two papers on CWW [3,4]. The
compiled dataset is very large both in terms of the number
and diversity of tasks tested in the laboratory (228 total
tasks), and in terms of the number of experimental
participants who did each task (generally 38 or more). We
will also show that the predicted number of clicks is highly
correlated with the probability of task failure and with mean
solution time to perform the task.
For practitioners it is crucial to have both the increased
automation and the accurate measure of problem severity.
Practitioners function under strict time constraints, and they
must therefore prioritize repairing the most serious usability
problems first, fixing other problems only if time permits.
Potential pragmatic users of this tool include educators
creating distance-learning materials. Educators can also
apply the tool to build web-based enhancements for regular
courses and to help students learn to successfully navigate
websites to find information.
Researchers, too, will benefit from the increased level of
automation and accurate measure of problem severity. In its
current form, however, CWW is still limited to assessing
the usability of texts used for the headings and links of the
navigation system, and this is only one aspect of webpage
and website usability evaluation. Other researchers will
now find it more feasible to integrate CWW with other
cognitive models and UEMs. For example, Miller and
Remington [21] have used estimates of heading/link label
quality to settle questions about the optimal information
architecture and number of links per webpage.

THEORETICAL FOUNDATIONS OF CWW
CWW is a theory-based usability inspection method [22]
for detecting and correcting design errors that interfere with
successful navigation of a website [1,3,4]. CWW, like the
original Cognitive Walkthrough [26], is derived from a
goal-driven theory of website exploration, CoLiDeS [15].
CoLiDeS, an acronym for Comprehension-based Linked
model of Deliberate Search, extends a series of earlier
models [16] of performing by exploration and is based on
Kintsch’s [14] construction-integration theory of text
comprehension and problem solving processes. CoLiDeS is
part of a broad consensus among theorists and website
usability experts [5,6,7,8,13,20,21,23,24,25] that problem
solving processes determine users’ information-seeking or

search behaviors when exploring a new website or carrying
out a novel task on a familiar website.
CoLiDeS and other models cited in the previous paragraph,
agree on the assumption that users, at any step in a task,
consider a set of actions and select the action they perceive
to be most similar to their current goal. The term action
refers to both mental operations and physical actions, e.g.,
clicking on a link or attending to a subregion of a webpage.
CoLiDeS assumes that it takes a two-step process to
generate a physical action on a webpage (e.g., clicking a
link, button, or other widget). Step one is an attention
process that parses a webpage into subregions, generating
descriptions of each subregion from heading texts and from
knowledge of webpage layout conventions. CoLiDeS then
attends to the subregion whose description is perceived to
be most similar to a user’s current goal.
Step two is an action selection process that selects and acts
on a widget (e.g., a link) from the attended-to subregion.
Using a comprehension-based process, CoLiDeS generates
a description of each widget and selects a widget that is
perceived to be most similar to the current goal. Then it
generates a description of actions for the selected widget
and selects an eligible one by considering knowledge of
website interface conventions. The processes involved in
generating descriptions of subregions and physical actions
are assumed to be analogous to the processes of text
comprehension, described by Kintsch’s construction-
integration theory of comprehension [14]. In the
applications of CoLiDeS described below, it is assumed
that heading texts determine the description of subregions
and that link texts determine the descriptions of widgets
(e.g., links).
Figure 1 shows schematically how the CoLiDeS attention
and action selection processes work along with mental
representations of an example webpage generated during
the attention process. In this example the user first parses
the entire webpage into seven subregions and attends to the
content area. Then the user parses the attended-to content
area subregion and probably focuses on either of two sub-
subregions, the leftmost sub-subregion, International, that is
the correct one, or the rightmost sub-subregion, Other Sites,
that competes for the user’s attention. On the assumption
that the user selected the correct sub-subregion, the user
proceeds to an action selection process. In Figure 1, the link
labeled by the text “Oceania” is the correct link to
accomplish the user’s goal of wanting information about
traveling to New Zealand and hiking the national parks on
the south island. Unfortunately, even when users focus on
the correct heading, they may not click the correct link,
Oceania, because even college-educated users have little
background knowledge about Oceania. Oceania is, thus an
unfamiliar term for users with college-level general reading
knowledge, and they may not realize that New Zealand is
located in Oceania.
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  Performing a Task, Information Scent, and CWW
In the most straightforward case, the ideal case of pure
forward search, performing a task (accomplishing the user’s
goal) involves making a series of k correct link choices that
lead to a page that contains needed information or supports
a desired action, such as purchasing a product. In the case
of pure forward search CoLiDeS assumes that performing
the task involves a sequence of k attention-action selection
pairs, where on each page both the descriptions of the
correct subregion and the correct link in that subregion are
perceived to be most similar to the user’s goal and are
selected as a next move. A variety of alternative models of
web navigation [5,6,7,8,23,25] describe the user’s
perceptions of similarity as information scent and the
sequence of k  pairs of perceptions as a scent trail.
Successful completion of a task involves following a scent
trail that leads a user to make correct choices at each step.
CWW [3,4] identifies usability problems derived from
CoLiDeS’s simulations of step-by-step user behavior for a
given task on a particular webpage. CWW detects and

corrects errors in the designs of webpages that can derail
the simple scent-following process. For example, one or
more incorrect alternatives may have equal or higher scent
than the correct one and/or the correct alternative may have
very weak scent. Following the two-step action selection
process of CoLiDeS, CWW looks first for problems with
headings and then with links nested under the headings.

Navigation Usability Problems CWW Detects
CoLiDeS predicts that users will encounter four types of
usability problems while navigating websites to accomplish
particular tasks (see Figure 1 for the relationship between
the locations where the problem types occur and the
corresponding CoLiDeS processes):
1. A weak scent link refers to the situation when a correct

link is not semantically similar to the user goal and
there are no other correct links that have moderate or
strong similarity. CoLiDeS assumes that the user may
never perceive the correct link as a useful target for
action when it has weak scent. Users understand the
text but perceive the link to be unrelated to their goals.

Figure 1. CoLiDeS model for how user accomplishes goal on Peak to Peak home page (<http://www.peaktopeak.net>)
with CWW problem identification and prediction of 4.7 mean total clicks to accomplish user goal on this webpage
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2. An unfamiliar problem occurs when typical users of
the website lack sufficient background knowledge to
comprehend a correct link or heading text. Unfamiliar
problems happen when the topic is one that typical
users know little about or when heading/link texts use
technical terms or low frequency words that are novel
for a particular user population. Unfamiliar texts have
little or no meaning for typical users. Even if there is a
strong objective similarity between the goal and the
heading/link text, only users who comprehend the
meaning can actually perceive the scent, not users who
find the text unfamiliar.

3. A competing headings problem arises when any
heading and its associated subregion is semantically
very similar to the user goal but does not contain a
correct link that leads to accomplishing the user goal.
Competing headings problems are liable to be serious
problems, because they divert the user’s attention away
from a correct heading that is on the solution path for
that goal. CoLiDeS assumes that users will only attend
to and click links in correct or competing subregions,
ignoring links in other subregions.

4. A competing links problem occurs when a correct or
competing subregion contains one or more links that
are semantically similar to the user goal but not on the
solution path. Competing links problems can occur
even in the best-case scenario, when the user’s
attention has been first drawn to a semantically similar
correct heading and its associated subregion. CWW
now separately tallies the number of competing links
that occur under competing headings and the number
of competing links that occur under a correct heading.

Latent Semantic Analysis and Information Scent
CWW employs Latent Semantic Analysis (LSA) to
compute similarities of goals with descriptions of
subregions (headings) and possible physical actions in the
attended-to subregion (link texts). Goals and descriptions
are collections of words, and LSA can compute the
similarity between any two collections of words.
LSA [17,18,19] is a machine learning technique that builds
a semantic space representing a given user population’s
understanding of words, short texts (e.g., sentences, links),
and whole texts. The meaning of a word, link, sentence or
any text is represented as a vector in a high dimensional
space, typically with about 300 dimensions. LSA generates
the space from a very large collection of documents that are
assumed to be representative of a given user population’s
reading experiences. While analyzing the distinctive
characteristics of the particular user group, CWW
evaluators choose the LSA semantic space whose corpus of
documents best represents the background knowledge of
the particular user group – the space built from documents
that these users are likely to have read.
The CWW website (http://autocww.colorado.edu) currently
offers a college level space for French and five spaces that

accurately represent general reading knowledge for English
at college level and at third-, sixth-, ninth-, and twelfth-
grade levels. So far CWW researchers have tested
predictions and repairs only for users with college-level
reading knowledge of English, but they will soon expand to
other reading levels and languages.
The degree of semantic relatedness or similarity between
any pair of texts, such as the description of a user’s goal
and a link label on a webpage, is measured by the cosine
value between the corresponding two vectors. Cosines are
analogous to correlations. Each cosine value lies between
+1 (identical) and -1 (opposite). Near-zero values represent
two unrelated texts.
CWW uses LSA to compute the semantic similarities
between user goals and subregion heading and link labels or
descriptions of other widgets. CWW predicts that users
attend to the subregion with the highest goal-heading (or
goal-subregion) cosine value and the link or widget in the
attended-to subregion with the highest goal-link (or goal-
widget) cosine value. CWW represents user goals with
realistic, narrative goal statements that are long enough for
accurate LSA predictions (100-200 words).
Another important measure provided by LSA is term vector
length, a measure that is correlated with word frequency,
and that estimates how much knowledge about a word or
phrase is embedded in the designated LSA semantic space.
Words with low frequency in the corpus (e.g., specialized
technical or scientific terms) have short term vector lengths.
When a heading/link has a short term vector length, CWW
predicts that users modeled by the semantic space will
perceive it to be relatively meaningless, reducing the
probability that users will attend to or click on it.

EXPERIMENTS 1 AND 2
The goals of Experiments 1 and 2 were to (a) replicate the
findings of the foundational experiments [3,4], and (b)
greatly enlarge the number and diversity of tasks tested in
the laboratory, resulting in very large dataset sufficient for
multiple regression analysis.

Replicate earlier experiments with 100 new tasks
The subjects (52 in Experiment 1 and 76 in Experiment 2)
were undergraduates enrolled in an introductory psychology
course, who completed the experiment as part of their
course requirements. The procedure used a simulated
encyclopedia website that presented a series of tasks. A
countdown timer allowed subjects to spend no more than
150 seconds on each task. If the person found the correct
encyclopedia article, clicking a link in a “correct item” box
took the person on to the next item in the sequence. If the
person did not find the correct encyclopedia article within
the time limit, a time-expired page appeared. When the
person clicked the link on the time-expired page, the next
item appeared, just as it would have if the person had found
the actual encyclopedia item.
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Experiment 1 used 10 new tasks with CWW-identified
goal-specific competing heading problems. Experiment 2
used 40 new tasks, half with competing headings problems
and half with unfamiliar problems. In both experiments
there were two webpage conditions, unrepaired and
repaired. The webpages for Experiment 1 all displayed 74
links nested under 13 headings, presenting the goal
statement at the top of the webpage. The webpages for
Experiment 2 also displayed the goal at the top of the
webpage but below the goal statement were 93 links nested
under 9 headings. The repaired and unrepaired webpages
for the same task looked identical, but the unrepaired
webpage had only one correct link, the link that was correct
on the online encyclopedia website being simulated. In
contrast, the repaired webpage for competing heading
problem tasks provided at least one correct link option
under each and every competing heading. For unfamiliar
problem tasks, there were two repairs: (a) substitution of a
familiar link text for the unfamiliar link text, such as
‘Paleontology and Fossils’ in place of “Paleontology,” and
(b) addition of at least one correct link that was a familiar
link, that was nested under the heading with the highest
goal-heading cosine, and that was the link with the highest
goal-link cosine compared to other links in that subregion.
For both experiments there were two groups of subjects,
and everyone unknowingly alternated back and forth
between doing a task on the repaired webpage condition
and then doing a task on the unrepaired webpage condition.
For each task it was possible to compare performance for
the group that did the task in the repaired webpage
condition, and the other group that did the task in the
unrepaired webpage condition. To analyze the data we used
Repeated Measures ANOVA, after first computing an
average for each subject’s performance on all tasks of the
same problem type in the same webpage condition. We
used different orders for presenting the items, but no order
effects were found in either experiment, allowing us to
ignore presentation order.
For Experiment 1 both subject groups had identical means
of 5.62 clicks for the fives tasks done on the unrepaired
webpages, and the between-group difference was very
slight for the five tasks done on repaired webpages – 1.81
clicks compared to 1.96 clicks. There was a statistically
significant difference between the repaired and unrepaired
webpage conditions, F (1,50) = 253.46, p <.0001 ,
replicating earlier findings [3].
For Experiment 2 the means for unrepaired vs. repaired
competing heading problem tasks was 6.46 and 2.01,
respectively. For unfamiliar problem tasks the means for
unrepaired vs. repaired were 5.70 and 2.55, respectively.
Technically we verified the hypothesis that the repaired
webpage condition produced better performance by finding
a significant interaction between group condition and the
means for the four sets of 10 items: odd-numbered
competing headings items, even-numbered competing
headings items, odd-numbered unfamiliar items, and even-

numbered unfamiliar items, F (3, 222) = 244.67, p <.0001.
This pattern of results, showing highly significant
differences between repaired and unrepaired webpage
conditions, again replicates our earlier findings [3].

Compile dataset for multiple regression analysis
We used multiple regression analysis to derive a formula
for predicting problem severity. Successful use of multiple
regression requires a large dataset of genuinely comparable
items. Experiments 1 and 2 provided 100 tasks for the
regression analysis, and we were able to reuse data for 64
tasks from two webpage conditions (unrepaired and
repairedNoExamples) from two earlier experiments [3].
The result was a dataset with a total of 164 tasks that
compiled all the tasks done under experimental conditions
that met specific criteria for inclusion. The criteria required
pairs of tasks. For each pair of tasks, the goal was identical
for two well-matched experimental groups, but one
experimental group tried to accomplish the goal on an
unrepaired webpage and a second group tried to accomplish
the same goal on a repaired webpage. For the sample of
tasks done in the unrepaired condition, the tasks manifested
diverse combinations of competing headings, competing
links, unfamiliar links, and weak-scent links.
The resulting compilation consisted of 82 pairs of tasks,
164 tasks altogether. For all 164 tasks we set a minimum
0.76 cosine between the actual webpage content article and
the goal (summary of the article) shown to experimental
participants, ensuring that experimental participants had an
accurate representation of the complete article they were
trying to find in the website. The experimental groups that
met the criteria were drawn from four different
experiments, and no tasks done by these experimental
groups were excluded from the dataset for re-analysis.
Like any other type of problem-solving behavior,
performance on these tasks exhibits a lot of between-subject
variance, and 20 experimental participants per task is
considered the minimum to produce stable means for
problem-solving tasks. We far exceeded that minimum. To
ensure stable estimates of mean performance for each of the
164 tasks, the mean clicks for 144 of the tasks were based
on data from at least 38 experimental participants, and the
means for the remaining 20 tasks were based on the data
from at least 23 experimental participants.

Automatable rules solve reliability problem
We then developed a procedure for re-analyzing all 164
items. Towards that end, we iteratively rescored the set of
164 tasks until we had created a set of automatable rules for
identifying competing headings, competing links,
unfamiliar links, and weak-scent links. These rules and the
accompanying rationale for each rule can be downloaded
from <http://autocww.colorado.edu/~blackmon/Tutorials
/AutomatableRules.doc>, and Figure 2 describes, step-by-
step, the complex CWW procedure with the current edition
of its parameters.
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Automatable rules eliminate the subjective, time-consuming
hand editing of LSA analyses that the CWW creators
originally thought necessary [4], paving the way for more
complete automation of CWW available in the ACWW
interface at <http://autocww.colorado.edu/~brownr>. These
automatable rules solve the reliability problem inherent in
hand-edited LSA analyses by using completely objective
rules to identify competing headings/links and weak-
scent/unfamiliar links. These rules build on objective LSA
measures of similarity and familiarity, avoiding the
deficiency of low inter-rater agreement in UEMs [11].
The automatable rules are all written as if-then production
rules, making it easy for a computer programmer to write
code to fully automate the CWW problem-identification
process. For example, a competing heading is a heading
that pulls attention away from a correct heading, but the
automatable rules specify two different sets of precisely
defined conditions that can independently prompt
classification of the heading as a competing heading. The
first set has three conditions that must all be simultaneously
met: (a) the goal-heading cosine must be greater than or
equal to 0.8 times the highest goal-heading cosine of any
correct heading, (b) the goal-heading cosine must be greater
than or equal to 0.10 (i.e., not weak scent), and (c) the
highest goal-link cosine for the links nested under the
heading must be greater than or equal to 0.20.

Development of the prediction formula
Finally we developed a multiple regression model of task
difficulty. For initial laboratory studies [3,4] CWW
researchers had deliberately selected tasks that each
epitomized one class of usability problems, either
competing headings, competing links, or unfamiliar
problems. In actual fact, however, few tasks are pure
examples of just one of the four usability problems. Most
tasks are afflicted by more than one type of usability
problem, and some tasks are afflicted by all four of the
CWW problems.
By doing a multiple regression analysis of the 164-item
data set we tried to account for the variance in task
difficulty, indexed by mean total clicks. For the full 164-
item dataset the mean total clicks ranges from 1.0 click to
10.3 clicks with a mean of 3.7 clicks. The observed
multiple regression weights evaluated how much each type
of usability problem contributed to the overall difficulty
level.
The multiple regression analysis resulted in a regression
model of task difficulty that explains 57% of the variance in
observed mean total clicks as a function of three
independent variables, F  (4, 160) = 74.22, p  < .0001,
adjusted R2 = 0.574. All three independent variables are
statistically significant: (a) whether or not the only correct
link was unfamiliar, t = 5.1, p <.0001, (b) whether or not
the only correct link was a weak scent link, t = 5.8, p
<.0001, and (c) number of competing links nested under
competing headings, t = 10.8, p <.0001. The intercept is
also significant, t = 14.0, p <.0001.

The minimum solution path for all 164 tasks was a single
click, but the statistically significant intercept of 2.199
reveals that even the non-problem tasks took an average of
over two clicks to complete. The intercept and unweighted
regression coefficients give us a working formula for
predicting the mean total clicks:

Mean total clicks = 2.199
+ 1.656 if the correct link is unfamiliar
+ 1.464 if the correct link has weak-scent
+ 0. 754 times the number of competing links nested
under competing headings

Evaluation of prediction formula in same dataset
The next step after completing the multiple regression
analysis was to apply the multiple regression formula to
predict the mean total clicks for each of the 164 tasks, and
Table 1 displays the accuracy of the predictions by
comparing predicted and observed mean total clicks.
Table 1  sorts all 164 items into three groups, one for
predicted non-problem items that the CWW formula
predicted would be done in less than 2.5 mean total clicks,
one for moderate problems (predicted to be between 2.5 and
5.0 clicks), and one for serious problems (5.0 or more
clicks). These threshold values yielded three groups with
similar numbers of tasks per group: 65 non-problem items,
55 moderate problem items, and 44 serious problem items,
and for all three groups the observed values for mean total
clicks are very close in value to the corresponding predicted
values for mean total clicks.

1. Select the most appropriate semantic space to
represent a particular user group.

2. Collect a set of user goals to represent what that
user group is likely to want to accomplish on the
website under analysis.

3. Simulate how the user will parse the webpage and
identify all the individual subregions of the webpage.

4. Simulate the process of elaboration that occurs
during comprehension of short heading and link
texts.

5. Apply the LSA One-to-Many analysis to compare the
goal statement with the elaborated headings and
links and then sort the results first by headings vs.
links, and then by decreasing cosine value. Then
examine the sorted results and identify and mark the
correct heading(s) and link(s), the ones that actually
lead to accomplishing the goal in the actual online
website being simulated.

6. Apply the automatable set of rules for distinguishing
unfamiliar correct links, weak-scent correct links,
competing headings, competing links under correct
headings, and competing links under competing
headings.

7. Examine the results and see how to repair the
problems.

8. Apply the CWW Problem Severity Level formula for
predicting the mean total clicks under both the
repaired and unrepaired condition.

Figure 2. Procedure for evaluating problem severity

36



CHI 2005  ׀  PAPERS: Web Interactions April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

To test whether these thresholds were reasonable for
distinguishing non-problems from moderate problems and
moderate problems from serious problems, we drew from
the 164-item dataset the 100 items for which we have
recorded percentages of task failure, i.e., percentages of
experimental participants who did not complete the task in
the allotted time (usually 130 seconds). We did a simple
regression of the percentages of task failure per task on
observed mean total clicks for the same task, finding a
correlation of 0.93, F (1, 98) = 651.78, p < .0001, adjusted
R2 = .87.
 We then used the regression formula (percent task failure =
-.154 + 0.082 times observed mean total clicks) to estimate
a task failure rate of 5% at 2.5 mean total clicks
(operationally defined as the threshold between non-
problem and problem items), 26% at 5.0 mean total clicks
(operationally defined as the threshold between moderate
and severe problems), 51% at 8.0 mean total clicks, and
76% at 11.0 mean total clicks.
We can provide internal validation of the multiple
regression analysis another way, by subdividing the 164-
task dataset into unrepaired and repaired tasks. For the 82
unrepaired tasks in the 164-task dataset the predicted and
observed clicks were 5.02 vs. 5.22, and for the 82 repaired
tasks the predicted and observed clicks were 2.29 vs. 2.09.

Rates of Hits vs. False Alarms
Even though Table 1  shows little discrepancy between
predicted and observed mean total clicks, a more exacting
standard is to examine hit rates vs. false alarm rates for the
unrepaired tasks within the total dataset of 164 tasks. At the
time the experiments were performed, 82 tasks were
selected as unrepaired tasks. By then-defined criteria, these
82 unrepaired tasks were all predicted to be problems. The
current, more accurate CWW procedure, however,
diagnosed only 75 of these 82 tasks as problem tasks.
The overall hit rate for these 75 tasks in the unrepaired
condition is 92% (69/75), and the overall false alarm rate is
8% (6/75). For the 46/75 tasks that had predicted serious
problems (predicted mean clicks of 5.0 or higher), the hit
rate was 100% and the false alarm rate was 0%. In other
words, 46/46 (100%) tasks had observed mean clicks of 2.5
or greater. Of these 46 problems that were predicted to be
serious problems 36/46 (78%) actually had observed mean
clicks of 5.0 or higher (the other 10 had observed mean
clicks between 2.5 and 5.0).

Success Rates for Repairs
Another important question concerns the success rate for
CWW repairs of problems. A rigorous standard for a
successful repair requires a statistically significant
superiority in performance for experimental participants
who performed the task on the repaired webpage compared
to experimental participants who performed the task on the
unrepaired webpage. The success rate, then, is the percent
of all unrepaired problem tasks that meet this rigorous
standard for successful repair. Of the 82 unrepaired tasks in
the original dataset, 75 are predicted to be problems by the
current criteria, and the overall success rate for repairs is
83% (62/75). For the 46/75 predicted problems that were
predicted to be serious problems (predicted mean clicks 5.0
or more), however, the success rate was much higher –
43/46 (93%). This is important to practitioners, because it
shows that they will reap solid benefits for investing effort
in repairing the serious problems, problems that would
cause high rates of task failure if left unrepaired.
As reported earlier [3], we found statistically significant
differences (p <.0001) between repaired and unrepaired
conditions in repeated-measures ANOVA analyses in our
initial studies of CWW-guided repairs for 32 tasks. By
current criteria only 25 of the 32 tasks are predicted to be
problems, and our re-analysis of the initial study found that
the success rate for repairs was only 16/25 (64%) for these
25 tasks. In subsequent experiments we added 50 additional
tasks in both unrepaired and repaired conditions, and the
success rate has risen to 46/50 (92%) for these tasks. While
developing the formula for accurately predicting mean total
clicks for both unrepaired and repaired tasks, therefore, we
have also improved our success rate for repairs. As a result,
we can now set a higher standard for evaluating the success
of repairs. The higher standard is an important advance,
because practitioners’ need to know that the time they
invest in repairing problems is wisely spent.
Among all 75/82 unrepaired tasks predicted to be problems,
we have consistently found unfamiliar problems to be
particularly challenging to repair. Unfamiliar problems are
difficult to repair, because there is no easy way to
compensate for users’ low background knowledge of a
topic. Out of the 75 tasks predicted to be problems, 28 have
an unfamiliar correct link, and the success rate was only
21/28 (75%) for these tasks. For the other 47/75 tasks with
no unfamiliar problem, the success rate was 41/47 (87%).

CROSS-VALIDATION EXPERIMENT
We ran a third experiment to see if the prediction formula
replicated with a completely new set of tasks, and we
included in the set 35 tasks predicted to be non-problems.
The subset of 35 non-problems enabled us to measure rates
of correct rejections vs. misses for the first time.

Subjects
The 113 experimental participants were all enrolled in the
introductory psychology course and completed the
experiment for course credit.

Table 1. Comparison of observed and predicted
scores for 164-item dataset.

Problem Severity Level Observed Predicted
No Problem (predicted
clicks 1.0–2.5) 2.17 2.20

Moderate Problem
(predicted clicks 2.5–5.0) 3.52 3.80

Serious Problem (predicted
clicks 5.0 and up 6.43 6.17
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Materials
We selected a total of 64 new items from the same online
encyclopedia website from which the 164-item dataset was
drawn for the development of the prediction formula. The
simulated encyclopedia website has a total of 93 links
nested under nine headings. For each of the 64 tasks, non-
problem tasks as well as problem tasks, one and only one of
the 93 links actually led to the target encyclopedia article.
This created a conservative test of the ability of the
prediction formula to distinguish between tasks that users
can do easily compared to tasks associated with high rates
of task failure. Using the prediction formula, we computed
the predicted mean total clicks for all 64 items. For each of
the 35 non-problem tasks the prediction was identical: 2.20
mean total clicks. For the 29 problem tasks the formula
predicted a mean of 5.43 clicks, ranging from 3.66 to 8.19.

Procedure
Experimental participants first did five practice tasks and
then alternated between non-problem and problem tasks,
preventing discouragement from encountering two or more
difficult items in a row. We divided the 64 tasks into two
sets of 32 tasks with the same percentage of non-problem
and problem tasks. There were two experimental groups,
and each group did one set of 32 tasks after completing the
five practice items. To control for order effects, we used
three randomly ordered sequences for each set of 32 tasks.
The main webpages displayed the words “Find an
encyclopedia article about X” followed by a summary (100-
200 words) of the target encyclopedia article. This task
description appeared at the top of each of the headings-links
webpages, and below it appeared nine headings and up to
one set of links associated with one of the headings. The
summary was highly similar to the text of the actual
encyclopedia (operationally defined as a minimum LSA
cosine of 0.80). The minimum cosine ensures that
experimental participants have an accurate representation of
each article they were asked to find. The summary was
available throughout the search time. A countdown timer
limited search time for each task to 130 seconds.

Results
As a within-subject variable we computed the average
clicks for the non-problem tasks and for the problem tasks.
Both groups performed consistently better on non-problem
tasks than on problem tasks, and the difference was

significant, paired t-test (df = 52) = 17.44, p < .0001, and
paired t-test (df = 59) = 28.23, p < .0001, respectively.
We repeated the multiple regression analysis with the cross-
validation set of 64 new tasks and three independent
variables explained 50% of the variance, F (3, 60) = 22.042,
p <.0001. The three independent variables are identical to
the three independent variables found for the 164-task
original dataset. All three independent variables are
statistically significant: (a) whether or not the only correct
link was unfamiliar, t = 3.6, p = .0007, (b) whether or not
the only correct link as a weak scent link, t = 3.0, p = .0037,
and (c) number of competing links nested under competing
headings, t = 4.5 p <.0001. The intercept is also significant,
t = 9.7, p <.0001. The correlation coefficients for the cross-
validation sample of 64 tasks were similar to the correlation
coefficients for the 164-task dataset for the original multiple
regression analysis, as shown in Table 2.
The observed and predicted mean total clicks for problem
and non-problem items are shown in Table 3. We computed
the predicted mean total clicks using the prediction formula
derived from the 164-task dataset. For the 35 tasks with
predicted clicks less than 2.5 (predicted non-problems), the
predicted and observed clicks were both 2.20. For the 29
tasks predicted to be problems, the predicted mean total
clicks averaged 5.43, just under the observed value of 5.68.
It is important to remember that all 64 tasks in the cross-
validation study – both predicted non-problems and
predicted problems – each had only one correct link out of
93 total links. The CWW prediction formula was highly
successful in distinguishing non-problem tasks for which
people would locate and click the one and only correct link
within two or three attempts, compared to problem tasks for
which it would take an average of over five clicks to find
the correct link.
For the 29 tasks predicted to be problems, the hit rate was
26/29 (90%), and the false alarm rate was 3/29 (10%). That
is, 26/29 had observed mean total clicks greater than or
equal to 2.5, and 3 had observed mean total clicks less than
2.5. These rates of hits vs. false alarms for the cross-
validation dataset are similar to the rates of hits vs. false
alarms for the 164-task dataset.
Even more important, the cross-validation dataset provided
valid rates of correct rejections vs. misses, a statistic for
which we have previously not had adequate data. For the 35
tasks that were predicted to be non-problem items (i.e.,
tasks with predicted mean total clicks <2.5), 24/35 (69%)
had observed mean clicks of less that 2.5, the rate of correct

Table 2. Compare coefficients for 164-task dataset and
64-task cross-validation dataset (in parentheses)

Independent Variable Unweighted
Coefficient

Standard
Coefficient

Intercept 2.199 (2.481) 2.199 (2.481)
Competing Links Under
Competing Headings

.754 (.551) .578 (.423)

Unfamiliar Correct Link 1.656 (2.040) .264 (.330)
Weak-Scent Correct Link 1.464 (1.484) .254 (.280)

Table 3. Predicted vs. Observed Means for 64 Tasks
Included in Cross-Validation Experiment

Mean Total Clicks
Type of Task (64 Tasks)

Predicted Observed
Predicted Non-Problems 2.20 2.20

Predicted Problems 5.43 5.68
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rejections. Although 11/35 (31%) were misses, only 4/35
(11%) had observed mean clicks of greater than 3.5. and
none was a serious problem (i.e., none had observed mean
clicks equal or greater than 5.0).

Discussion
What we have shown is that we can use a multiple
regression model derived from our earlier studies to fully
replicate the multiple regression analysis and accurately
predict performance on a new group of diverse tasks with
new participants. Unlike the experiments from which the
164-task dataset were drawn, the experiment from which
the cross-validation tasks were drawn was a closer
simulation of the actual online website. Nevertheless, the
simulated website was an online encyclopedia that was the
same for both the 164-task original dataset and the 64-task
cross-validation dataset. The advantage of online
encyclopedias is that they cover all possible topics and use
familiar categories that were learned in school. Although it
is reasonable to assume that the results from this diverse
sample of online encyclopedia tasks will generalize to any
informational website, this cross-validation study provides
no evidence to confirm that assumption.

CONCLUSIONS
Progress Toward Automating CWW
A truly useful CWW has to be automated, and the work
reported here represents an important advance in that
direction. The automatable rules for problem-identification
and the new prediction formula, combined with LSA,
together pave the way to full automation of the CWW
method. Ivory-Ndiaye (2003) reviews currently available
automated tools for usability evaluation of websites and
comes to a similar conclusion about their necessity.

Reliability of CWW
We have solved the reliability problems inherent in most
UEMs [11], including the original Cognitive Walkthrough.
From the outset CWW has largely eliminated reliance on
subjective human judgments by substituting LSA to
objectively estimate similarity and familiarity. The work
reported here – development of automatable rules for
problem identification and the new formula for predicting
problem severity – free us almost completely from relying
on subjective human judgments.

Validity of CWW and Measure of Problem Severity
The psychological validity of CWW for college-educated
user populations is demonstrated by our high rates of hits
vs. false alarms, correct rejections vs. misses, high success
rates for repairs, and the accuracy of our new measure of
problem severity.  Gray and Salzman [9,10] have criticized
previous UEM evaluation studies for failure to report such
statistics, and Gray and Salzman, along with Hertzum and
Jacobsen [11], found that UEMs typically do a very poor
job of rating usability problem severity.

Our problem severity measure has the highest hit rate for
identifying serious navigation usability problems, and for
the most serious problems we also find that CWW-guided
repairs of navigation usability problems have the highest
rates of statistically significant performance improvements.
With the help of this tool, therefore, usability experts and
web developers can find and repair the problems most
worth repairing.

Why Cross Validation Is Critical
The cross validation study of 64 new tasks was a balanced
sample of diverse non-problem and problem tasks. As
shown in Table 2, this study successfully replicated the
prediction formula derived from the initial dataset. The
excellent agreement of the estimated regression coefficients
is in part due to the large samples of subjects and tasks. The
current parameters of the prediction formula are relatively
stable and consistent with the CoLiDeS cognitive model,
but it is likely that these parameters will require fine-tuning
when extended to much larger samples of tasks done on a
wide variety of informational websites.

Limitations of CWW
The principal limitations of CWW are a consequence of the
tasks used in most of our experiments to date: searching for
experimenter-specified articles on a simulated encyclopedia
website, using experimental webpages that feature textual
headings and links in simplified webpage layouts with no
graphics (see experiments at <http://autocww.colorado.edu/
~blackmon>). The current version of CWW nevertheless
dovetails with research on other aspects of website
usability. For example, Miller and Remington’s [21]
simulation results demonstrate how the structure of a site
interacts strongly with patterns and variances of scent
values on a webpage.
Our experiments have so far [3,4] been limited to testing
predictions of heading and link selection for college-
educated users. A driving motivation in our work has been
our hypothesis that we can successfully extend the CWW to
evaluating websites for user groups who speak any
language at any level of general reading knowledge. Using
a variety of LSA semantic spaces, we expect to be able to
soon extend CWW beyond college-educated populations
and make reliable, psychologically valid judgments of
diverse user populations, including users of all ages and
levels of background knowledge and members of other
language and cultural groups.

Contribution and Benefit
The most important contribution of this paper is the
development of a measure of problem severity (task
difficulty) that is theoretically sound, psychologically valid,
reliable, and automatable. This measure of problem severity
benefits both researchers and practitioners. As the size and
diversity of the dataset continues to grow over time, we can
recalibrate the parameters of the formula for higher
accuracy. We will, therefore, periodically post updates in
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the formula at <http://autocww.colorado.edu/~brownr> and
will also track expanded CWW functionality at
<http://auto.colorado.edu/~blackmon>.
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