
A COMPUTATIONAL MODEL OF SKILLED USE OF
A GRAPHICAL USER INTERFACE

Muneo Kitajima Peter G. Polson

Industrial Products Research Institute University of Colorado
1-1-4 Higashi Institute of Cognitive Science

Tsukuba Ibaraki 305, Japan Boulder, Colorado 80309-0345
+81 298 54 6731 +1 (303)492-5622
i8001@ipri.go.jp ppolson@clipr.colorado.edu

ABSTRACT
This paper describes a computational model of skilled use
of a graphical user interface based on Kintsch’s
construction-integration theory [4, 8]. The model uses
knowledge of a detailed representation of information on the
display, a user’s goals and expectations, knowledge about
the interface, and knowledge about the application domain
to compute actions necessary to accomplish the user’s
current goal. The model provides a well-motivated account
of one kind of errors, action slips [14], made by skilled
users. We show how information about the intermediate
state of a task on the display plays a critical role in skilled
performance, i.e., display-based problem solving [10].

KEYWORDS: user models, graphical user interfaces,
display-based problem solving, action slips

INTRODUCTION
The goal of this paper is to present a computationally-based
performance model of the skilled use of applications with
graphical user interfaces like that of the Apple Macintosh.
The model provides a theoretical analysis of some basic
attributes of skilled human-computer interaction showing in
detail how information about the intermediate state of a task
on the display plays a critical role in skilled performance,
that is, display-based problem solving [10]. Skilled users
make a surprising number of errors [3, 14], and the model
provides a well-motivated account of this behavior as well
as other phenomena consistent with the assumption that
skilled performance is not based on detailed, prestored plans
[13, 15]. We summarize results from four sets of
simulation experiments exploring the parameter space,
demonstrating how skilled users can make errors, and
validating the sufficiency of the model.

Display-based Human-Computer Interaction
Recent empirical studies of display-based human-computer
interaction have provided evidence against standard plan-
based theories (e.g. [3, 7]) of expertise in HCI. Mayes,

Draper, McGregor and Oatley [13] report that experienced
MacWrite users have poor recall memory for the names of
menu-items. In addition, Payne [15] has shown that
experienced users do not have complete knowledge about
effects of commands.

These results provide support for theoretical frameworks
that assume that a sequence of user actions is not pre-
planned. Each action is selected making use of display
feedback during the course of generating a sequence of
actions necessary to complete a task [10, 15]. The display
plays a crucial role in successful and smooth interaction;
the interaction is truly mediated by the display.

Other researchers have developed theories of skilled
performance in which successful interactions are mediated
by the representations of intermediate states of a task
presented in a display. Howes and Payne [5] extended the
task action grammar framework to display-based, menu
systems, which is a competence model of users' knowledge

Figure 1. Example of the display in the task to plot the data
from document “Example Data” using Cricket Graph, a
Macintosh application.

of display-based systems for evaluating the consistency of
an interface. Larkin [10] calls her framework display-based
problem solving.

An Example Task
We want to account for the performance of a skilled user in
tasks like the one shown in Figure 1. A user is plotting
the data in the document “Example Data” using the
Macintosh application Cricket Graph. On the screen are
numerous objects that represent the current state of this
task: the active window displaying the default version of
the graph, a spreadsheet containing the data, the document
icon for the data file, and an open folder.

An intermediate state of the task is shown in the display
presented in Figure 1. The user has just completed plotting
the column of numbers labeled “Observed” as a function
of “Serial Position" and is starting to perform the subtask
of editing the default version of the graph title. The user
positions the arrow pointer on the title. The next correct
action is to double-click on the title.

A Comprehension-Based Theory of Human-
Computer Interaction
Our model is based on Kintsch’s construction-integration
theory of text comprehension [8]. It is related to similar
models proposed by Mannes and Kintsch [12], Doane,
Kintsch, and Polson [4], and Wharton and Lewis [18].
These models generate in real-time an action sequence
necessary to perform a task in a manner analogous to a
skilled reader constructing a contextually appropriate
interpretation of a text during reading. In these models, the
action selected in a specific situation is generated by a
comprehension process which takes as input a
representation of the user’s current situation. This situation
is defined by the user’s current goal and expectation,
information on the display, and facts about objects on the
display and the task retrieved from long-term memory.

A MODEL OF SKILLED USE OF A GRAPHICAL
USER INTERFACE
In this section, we begin with an overview of our theory of
skilled performance of tasks using a graphical user interface.
Next, we describe the construction-integration process.
More details about the theory are provided in [8]. The
following sections describe the different kinds of knowledge
used by the model to generate correct action sequences, how
parts of this knowledge are retrieved from long-term
memory, how all of this knowledge is interconnected in a
network, and the parameters of the model that control the
retrieval and the integration processes.

An Overview
The model selects an eligible action given the current state
of the display, user's current goal, and user's expectation
concerning a desirable display state. Actions in the model
are defined at a very small grain size. They include using
the mouse to move the arrow pointer to an object, single-
clicking an object, double-clicking an object, pressing and
holding the mouse button, releasing the mouse button,
typing, and the like. However, there is no direct

representation in the model of sequences of actions that
perform common subtasks like selecting a command from a
menu. The model generates a sequence of actions when a
sequence of display states and an associated goal and
expectation are provided to it.

The Action-Selection (Comprehension)
Processes
The construction-integration theory [8, 12] assumes that
selection of the correct action (comprehension) is a two-
phase process with construction and integration phases. In
the construction phase, propositions representing a user's
current goal and expectation, the state of the display, and
knowledge retrieved from long-term memory are
incorporated into a network using argument overlap to
define links between individual propositions. The
construction processes are driven bottom-up; they are not
constrained by context. As a result, the network contains
inconsistent information retrieved from long-term memory
and representations of the correct action as well as many
wrong actions.

In the integration phase, the correct action is selected using
a spreading activation process. The action that is selected
for execution is the one whose representation has the
highest activation value and whose condition for execution
is satisfied. The condition is considered to be satisfied
when all propositions in it are found in the network. Some
propositions in the condition describe the display state;
these are incorporated in the network as display
representations. The others extracted from knowledge stored
in long-term memory; these are incorporated in the network
by a probabilistic sampling process in the construction
phase. The action changes the state of the display, defining
a new display state. If necessary, a new goal or new
expectation is retrieved. The cycle starts again with a new
display and, if changed, a new goal or expectation as input
to the construction phase.

The Knowledge
There are five kinds of knowledge used by the action
selection process: goals, expectations, the representation of
the display, general knowledge, and action plan knowledge.
All are represented as propositions. A proposition is a
tuple of the form (predicate, argument1, argument2,
argument3, ...,argumentn). In this paper, we will
paraphrase the propositional representation paraphrased as
simple sentences enclosed in square brackets. The predicate
is represented in plain type. Arguments referring to specific
objects on the screen are represented in italics, and bold
arguments refer to abstract concepts.

Goals
Goals are representations of a user’s intentions to perform
actions on objects [6]. The same goal can be associated
with a long sequence of display states. The goal
proposition for the example task shown in Figure 1 is
shown in (1).

[Goal is to perform Edit Graph-Title
on the object Graph-Title] . (1)

Expectations
An expectation is the representation of the consequences of
an action or sequence of actions in terms of the appearance
of one or more objects on the display. It is associated with
one or a sequence of display states. The model assumes
that expert users can generate detailed representations of
consequences of the next action. Expectations are closely
related to Selz’s anticipation schema [17]. The expectation
proposition for the example task shown in Figure 1 is
shown in (2).

[Expectation is to see entry into Edit Graph-Title
environment associated with Graph-Title] . (2)

Goals and expectations are stored in long-term memory and
are retrieved at the appearance of an associated display state.
However, the retrieval process is not simulated in the
current model.

Representation of the Display
The model assumes that the visual image of a screen is
parsed into a collection of objects, each represented by
propositions. Display-objects represent the state of a
screen. They include objects that define the style of a
particular interface, such as windows, menus, dialog boxes,
file icons, the mouse, the pointer, and the keyboard. Other
display objects are defined by an application or task, such
as editing or drawing a graph, and are usually the contents
of windows.

Figure 2 shows the representation for Figure 1. Each
object is represented by at least three propositions. The
first asserts that the object is on the screen. The second
identifies the object as a display object. The third
establishes a token-type relationship. Additional
propositions for an object describe additional information
about that object. For example, [Column-1 holds
Observed] represents a component of Example-Data.

The representation of displays contains limited information
about appearance. Only information reflecting underlying
system states that are relevant to the user are included in the
representation. The representation of an object reflects the
current internal state of the system and is used to let the
user know legal actions on the object. For example, the
mouse pointer in the Macintosh interface changes its
appearance depending on the internal system state. In
Figure 2, such representations as [Pointer-Shape is Arrow]
and [Pointer-Shape is not I-beam] are indicating system's
internal state. The mouse pointer takes on the arrow shape
on the desktop and the I-beam shape when over an object
that is editable. This distinction is crucial in defining the
result of an operation such as horizontal dragging. With
the I-beam pointer, it results in selection of that portion of
the text; with the arrow pointer, it results in dragging the
pointed-at object.

General Knowledge

General knowledge is knowledge about the components of
the display objects, the attributes of an object or
component, and the functions of or operations that can be
performed on an object or component. It is represented as a
collection of propositions. For descriptive purposes, we
have partitioned this collection into different domains
corresponding to the interface, tasks, and applications. This
knowledge is stored in long-term memory and is
incorporated in the network during the construction phase
by a probabilistic memory retrieval process described in a
later section.

For the task described in Figure 1, nine domains of
knowledge are assumed. The Macintosh graphical user
interface environment is represented in the domains of
dialog box, icon, interface objects, menu, and mouse. The
remaining domains are general facts about application,
application objects like graphs and spreadsheets, and
application functions like editing. The number of
propositions totals to 271.

Figure 3 is an example of the general knowledge about the
components of the graph domain, the properties of these
components and the functions that can be performed on a
component. Propositions stating [X has Y] define
properties or components. Examples are [Graph has
Title], and [Graph has Horizontal-Axis].
Propositions of the form [X afford to Y] assert that Y can
be performed on X . An example is [Graph-Title afford to
Grab for Move] .

Action Plan Knowledge
The users modeled in this paper are assumed to have highly
generic low-level action plan knowledge required to use the
interface. The action plan knowledge is a set of plan
elements that represent knowledge about relations between a
user's action and the interface's visible response. An action,
such as pointing or single-click, is associated with multiple
plan elements which describe different responses of the
system depending on the current states of display objects.
The types of actions and the number of variation of each
action used for the simulation experiments described later
are six plan elements for pointing, three for single-click,
four for press-and-hold, two for release, two for double-click
and two for type.

Plan elements are stored in long-term memory in a generic
form and do not refer to specific objects in the current
display. However, when retrieved from long-term memory
and incorporated into the network in the construction phase,
the variables in the generic form are bound to objects in the
display. All plan elements are always incorporated into the
network in the construction phase.

A plan element consists of three fields. An example of a
plan element is shown in Table 1. The name field describes
the action, double-clicking on particular graph title, and its
result, bringing up a particular edit dialog box. The
condition is a set of one or more propositions that must be
contained in the network in order for the plan to be able to

be executed. The outcome holds a set of one or more
propositions that describe the consequences of executing the
plan element in terms of changes in the display.

Links Within the Network
The network is defined by links between individual
propositions. Different kinds of links have different
strengths. The link strengths between propositions are
defined by the following six parameters; the argument
overlap weight, Warg, free association weight, Wassoc,
plan relation weight, Wplan, plan inhibition weight,
Winhib, the goal magnification factor, Fgoal and the
expectation magnification factor, Fexp. The free
association weight is defined in the discussion of the
retrieval process.

Argument Overlap Weight
Argument overlap is the most basic link between
propositions. This link type connects propositions
defining goal, expectation, the display representation,
general knowledge and the name fields of plan elements. In
the example used above, the argument Graph-Title, which
appears in the goal, expectation, representation of the
display, and the general knowledge retrieved from long-term
memory, serves as an argument for linking among them.
For example, the display representation, [Graph-Title is a
kind of Title], has connection to [Graph has Title],
[Graph-Title has link to Edit-Dialog-Box] , [Graph-Title
affords to Grab for Move], and [Graph-Title is not a kind
of Text] stored in long-term memory. When two
propositions share one argument, they are connected by a
link of strength of Warg.

Plan Relation Weight and Plan Inhibition Weight
Plan elements are different from the other kinds of
knowledge since they describe procedural knowledge; they
have condition and action parts and there are causal relations
among them. If a condition of plan A is disabled by the
execution of plan B, then plan A inhibits plan B. Or if a
condition of plan A is satisfied by the execution of plan B,
then plan A supports plan B. The strengths of causal
relations are parameterized by Wplan and Winhib.

Goal Magnification Factor and Expectation Magnification
Factor
The links from goal and expectation to the rest of the
network are treated differently from other links. The
strengths of goal and expectation related links are calculated
by multiplying the sum of Warg and Wassoc by the
manification factors Fgoal and Fexp, respectively.

Retrieval of General Knowledge from Long-Term
Memory Cued by Display, Goal, and Expectation
Recall that the display representation does not contain any
knowledge of the attributes of an object or component, nor
of the functions of or operations that can be performed on
an object or component. These kinds of knowledge, which
are retrieved by the probabilistic sampling process cued by
display representations, goal, and expectation in the
construction phase, play a crucial role in selecting a correct
plan element to be executed. In order for the correct plan to
fire, it must have the highest activation value among the
executable plans, and all propositions in the correct plan's
condition part must be incorporated in the network; part of
them are found in the display representation and the rest in
long-term memory. Plan elements receive activation from
goal, expectation, and display representation propositions
directly and/or via paths of links formed by general
knowledge propositions, and from other plan elements by
causal relations.

For example, the correct plan for the example task shown
in Figure 1 is shown in Table 1. In order to make this plan
executable, the proposition in the condition part, [Graph-
Title has link to Edit-Dialog-Box], has to be retrieved
from long-term memory because it is not a part of the
display representation (see Figure 2 and Figure 3). The
goal (1), expectation (2), and display representation (Figure
2) serve as retrieval cues for the proposition to be
incorporated into the network.

The probabilistic sampling process works as follows. Each
proposition in the goal, expectation, and display
representation serves as a retrieval cue. The simulation first
finds the set of all propositions in the general knowledge
stored in long-term memory that are linked via argument
overlap to a retrieval cue. Then the propositions in this set
are sampled probabilistically based on the strength of the
links between the retrieval cue and members of the set in
long-term memory. Members of this set are sampled-with-
replacement [16]. The number of retrieval attempts using
the current proposition as the cue is specified by the
sampling parameter, Nsample. Because of the nature of the
sampling-with-replacement process, dominant associates
may be retrieved more than once, but only one example of
the proposition is included in the network. Each time a
proposition in long-term memory is retrieved, the link
strength between the cue and this proposition is increased
by Wassoc.

Table 1. One of the two double-click plan elements
bringing up an edit dialog box or starting an application.

Name:Double-Click Graph-Title
by Arrow
for starting Edit-Dialog-Box

Condition:
If Graph-Title is on screen,

Graph-Title is pointed at,
above two Graph-Title s are identical
Graph-Title has link to Edit-Dialog-Box,
Pointer-Shape is Arrow, and
Pointer-Shape is not I-beam

Outcome:
Then start Edit-Dialog-Box

RESULTS OF SIMULATION EXPERIMENTS AND
DISCUSSION
We carried out four sets of simulation experiments. The
first two were designed to evaluate the knowledge
representations described in previous sections and to
explore the model's parameter space.

The first set of simulations used a simple task of starting
an application program by double-clicking its icon. The
second set of experiments used a task that involved editing
an icon label by inserting text.

The third set of simulations, using the same task as the
second simulation, was designed to investigate the process
by which the model makes errors by changing the sampling
parameter a range of 4 to 14.

The fourth set of experiments simulated execution of part of
the task shown in Figure 1. The simulated action sequence
started with the spreadsheet containing the raw data on the
screen. The model simulated two major subtasks. The first
was to plot the observed data points as a function of serial
position leading to the graph shown in Figure 1. The
second subtask, shown in Figure 1, involved double-
clicking the graph title to bring up a dialogue box which
enabled the user to change the text of the title and font and
point size of the text.

Exploration of the Parameter Space
A detailed report of the first two sets of simulation
experiments is contained in Kitajima and Polson (in
preparation). We briefly summarize the results here. The
first set of simulation experiments showed that Wassoc had
little or no effect on performance of the model and therefore
that parameter was set equal to 1.0 in all of the remaining
experiments. In addition, Wplan and Winhib should be set
to 1.0 and -1.0, respectively, for optimal performance of the
model.

In the second set of experiments, Nsample was set to a
large value, 14, assuring that the all necessary knowledge
would be included in the network by the sampling process,
Fgoal and Fexp were set equal and manipulated over a range
from 1 to 16, Warg from 1 to 4, and the other parameters
were set as above. The results showed that the larger Warg
becomes, the faster the integration phase converges, and the
model consistently activates the correct plan element with
the magnification factors (Fgoal and Fexp) set to 16. The
model will not activate the correct plan for small values of
the magnification factors.

An Attentional Mechanism
The magnification factors had to be set to 16 before the
correct plan would reliably get the highest activation and be
executed. With the magnification factor equal to 16 and an
overlap weight of 4, the link strength equals 64 for
propositions in the network whose arguments overlap with
the arguments of the goal and expectation propositions.

There are two reasons for this behavior. The magnification
factor is a kind of “attention” parameter. During the
construction phase, the large value of the magnification
factor causes the model to preferentially sample
propositions in long-term memory that overlap with the
goal and expectation. In the step shown in Figure 1, the
model will prefer to retrieve knowledge from long-term
memory that elaborates the representation of the graph title.
These elaborations are the critical propositions that provide
links, a path, from the goal and expectation to the correct
plan element.

During the integration phase, the large values of the link
strengths between goal and expectation and the rest of the
network, 64, cause the goal and expectation to be powerful
sources of activation. Thus, paths that overlap arguments
that appear in the goal and expectation will be highly
activated. However, it is exactly one of these paths that
leads to the correct plan element.

Errors
Studies of skilled users in a number of domains have shown
that they have fairly high error rates. One of the earliest
was Card, Moran, and Newell's [3] study of text editing, in
which they observed about a 10% error rate. They
hypothesized that experts were willing to trade off speed for
accuracy because error correction was a routine skill and in
most circumstances was not very costly.

There are numerous failure modes in the construction-
integration model that can occur during the comprehension
process. In this paper, we focus on the processes that cause
errors due to action slips by expert users [14]. The model
can make errors even when it is provided with correct goals,
expectations, display state representations, all possible
actions, and general knowledge. The stochastic memory
retrieval process describe earlier can fail to sample critical
pieces of general knowledge during the construction phase
for small values of the sampling parameter. During action
selection, the model uses the goal, expectation, and
contents of the display to sample associatively related
knowledge from long-term memory. Large values of the
sampling parameter make it almost certain that all relevant
knowledge will be included in the network. This memory
retrieval process is part of Kintsch's [8] original model of
text comprehension.

Sampling failures cause the model to build an incorrect
representation during the construction phase. A skilled user
fails to retrieve relevant information from long-term
memory. As a result, critical information is missing from
the network. The correct action may not be executable
because its prerequisites are missing from the network, or
the wrong action receives the highest activation because of
the incomplete representation. We have assumed that the
size of the sampling parameter is determined by a speed-
accuracy trade off process.

Figure 4 shows the results of the third set of experiments
that were conducted using the second task. Simulation runs

were carried for each of the following set of values of the
sampling parameter (4, 6, 8, 12, and 14). Figure 4 plots
the probability of successfully completing the label editing
task as a function of the sampling parameter. It is
particularly interesting to note that the model is capable of
performing in a region, 90 to 95% correct, that is
characteristic of expert behavior.

There are other error modes. The model may build a correct
representation but the parameters describing the activation
process are wrong, leading to an incorrect action receiving
the highest activation. This occurs when the magnification
factors were set to small values.

Many current models [1, 2] of skilled performance do not
provide well-motivated explanations of errors. These
models use collections of production rules to generate a
task’s goal structure in working memory and the action
sequences to perform the task. However, there are no
mechanisms in these models that would cause working
memory failures or incorrect rule execution accounting for
errors.

The simulation results from the second task shown in
Figure 4 demonstrate that the comprehension-based model
reported in this paper can make occasional errors and still be
able to perform complex tasks. Errors are caused by the
failure to use necessary general knowledge stored in long-
term memory. The important point to emphasize is that
the model does not guess. Errors are due to
misunderstandings of the current display state leading to
selection of the wrong action.

Display-Based HCI
This section describes how the model is display-based in the

sense used by Larkin and Simon [11] and describes the
results of the fourth set of experiments that simulated
plotting and editing the graph shown in Figure 1.

Howes and Payne [5], Larkin and Simon [11], Larkin [10],
and Kitajima [9] have all proposed models that made
extensive use of information about intermediate states of a
task contained in the environment or a display. Howes and
Payne [5] took a grammatical approach to model roles of
display in order to make analyses on the consistency of
display-based interfaces. Larkin and Simon [11] were
concerned with providing a principled account of why
various kinds of visual displays could often dramatically
facilitate problem solving processes. Larkin and Simon's
[11] argument was that display-based problem solving
enables individuals to substitute powerful perceptual
operations for difficult and unreliably performed cognitive
operations.

Classical information-processing models usually assume
that users generate and maintain in working memory a
complex goal structure that enables them to execute a
sequence of actions necessary to perform a task [1, 2].
Larkin [10] and Kitajima [9] show that the state of the
display can partially substitute for a complex goal structure
stored in working memory. Both the display and the
knowledge necessary to interpret to it substitute for a
complex, potentially fragile, and difficult to maintain goal
structure in working memory.

The Interactions of Goals, Expectations, and the Display
Table 2 presents the goals and expectations incorporated
into the simulation that generated the sequence of actions to
perform the task shown in Figure 1. The model has a few

Figure 4. The probability of success plotted as a function
of Nsample.

Table 2. Goals, expectations and correct action steps for
the third task.

G1 to draw line graph
E11 to see entering into line graph environment

step 1: Move Pointer to “Graph”
step 2: Hold Down Mouse Button
step 3: Move Pointer to “Line”
step 4: Release Mouse Button

E12 to see that "Serial Position" is selected as X axis
step 5: Move Pointer to “Serial Position”

in “Horizontal (X) Axis” Scroll
Window

step 6: Click Mouse Button
E13 to see that "Observed" is selected as Y axis

step 7: Move Pointer to “Observed”
in “Horizontal (Y) Axis” Scroll
Window

step 8: Click Mouse Button
E14 System draw line graph

step 9: Move Pointer to “New Plot”
step 10: Click Mouse Button

G2 to edit graph title
E21 edit graph title

step 11: Move Pointer to "Title"
step 12: Double Click "Title"

general subgoals. Expectations provide most of the
knowledge that organizes the sequence of actions that
performs the task. As we described earlier, the large value
of the magnification factor for links between the
expectation and display causes the model to focus its
“attention” on the part of the complex display relevant to
the current sequence of steps. By attention, we mean that
the model preferentially retrieves information from general
knowledge stored in long-term memory linked to the
arguments of the expectation. The model also strongly
activates paths from the expectation to plan elements with
overlapping arguments in their name fields.

Each expectation in Table 2 describes the final result of a
sequence of steps, which means that there is not a new
goal-expectation pair for each step. The successive
selection of the most eligible plan element at each display
state associated with an expectation, that is, the sequencing
of steps, is controlled by the condition field of the plan
elements, whose truth value is sensitively affected by the
step-by-step changes in the display state.

Another critical fact of our model is that it makes extensive
use of information about intermediate states of a task
contained in the display. The construction-integration cycle

enables the model to bring all relevant knowledge to bear
on the problem of selecting the next correct action. The
importance of a given knowledge domain in selecting the
action is shown by the amount of activation of
propositions in that domain.

Figure 5 shows activation values per proposition in each
domain. These values are calculated by dividing the
activation values collected by each domain by the number
of propositions in the domain. The domains shown in
Figure 5 changed their values very sensitive to the content
of the display and the current expectation. From the figure,
it is clearly seen what part of knowledge was doing work in
the network. The other domains had relatively constant
activation values throughout the task, including mouse,
icon, graph, editor, and spread sheet. Their averages were
around 0.002 which was remarkably smaller than those
values shown in Figure 5.

SUMMARY
This paper has provided a detailed account of a
computational model of the skilled use of a graphical user
interface. It is highly flexible and is capable of making
mistakes, hallmarks of skilled behavior.

Our most important contribution is the explanation of
errors made by expert users who have complete, well-
learned knowledge of how to perform tasks. The model can
make errors because it must compute each correct action. It
does not have a verbatim representation of the correct
action sequence which is always successfully retrieved from
memory. In our current models, the simulation is provided
with the correct sequence of goals and expectations required
to perform a task. The representation of the current
situation is constructed from information in the goal,
expectation, and the display. It is then augmented by
information retrieved from long-term memory by the
probabilistic sampling process. The information retrieved
from long-term memory is critical to the interpretation of
the information contained on the screen.

If critical information is not sampled during retrieval, the
simulation can make an error. The sampling parameter
determines the probabilities that the necessary knowledge
will be retrieved from long-term memory. However, the
likelihood of an error is dependent upon the details of the
current situation. If the correct action can be selected based
on knowledge of the goal, expectation and information in
the display, missing information from long-term memory
will have no effect. If, however, the correct action is
dependent upon the information retrieved from long-term
memory, sampling failures will lead to errors. In this way,
the error is not a random response; the model is not
guessing. The kinds of actions the model will choose are
strongly constrained by the current goal, expectation, and
state of the display.

The mechanisms mediating skilled performance contained in
this model are display-based in Larkin's [10] sense. The
results of the fourth set of simulation experiments show

Figure 5. Knowledge use in the integration process.

how a model is able to compute the action sequence
necessary to plot and edit the graph shown in Figure 1.
Expectations described in terms of expected changes in the
display guide execution of the task and focus the model’s
“attention” on the part of the display relevant to the current
task. The model preferentially samples information from
long-term memory providing a detailed elaboration of the
relevant parts of the display. Utilization of information in
the various knowledge domains varies as a function of step
in this complex task. These variations are jointly
determined by changes in the expectation and the state of
the display. The step-by-step changes in display state are
used for sequencing the actions to complete a task.

ACKNOWLEDGMENTS
We wish to thank Clayton Lewis, Walter Kintsch, David
Kieras, and Stephanie Doane for their contribution to this
research program. We thank John Rieman, Adrienne Lee,
Peter Foltz, and Dannielle McNamar for their comments on
earlier version of this paper. Muneo Kitajima was a visitor
at the Institute of Cognitive Science, University of
Colorado during our collaboration. Peter Polson’s
participation in this research was supported in part by NSF
Grant IRI 87-22792 and by Army Research Institute
Contract MDA903-89-K-0025.

REFERENCES
1. Anderson, J. R. Skill acquisition: Compilation of

weak-method solutions. Psychological Review, 94
(1987), 192-211.

2. Bovair, A. S., Kieras, D. E., and Polson, P. G.
The acquisition and performance of text-editing skill: a
cognitive complexity analysis. Human Computer
Interaction, 5, 1 (1990), 1-48.

3. Card, S. K., Moran, T. P., and Newell, A. The
Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates, Hillsdale, NJ., 1983.

4. Doane, S. M., Kintsch, W., and Polson, P. G.
Modeling UNIX command production: What experts
must know. ICS Technical Report #90-1. Institute
of Cognitive Science, University of Colorado, Boulder
CO., 1990.

5. Howes, A., and Payne, S. J. Display-based
competence: towards user models for menu-driven
interfaces. Int. J. of Man-Machine Studies, 33
(1990), 637-655.

6. Kieras, D. E. Towards a Practical GOMS Model
Methodology for User Interface Design. In M.
Helander (Ed.) The Handbook of Human-Computer
Interaction. Amsterdam, NV: North-Holland , 1988.

7. Kieras, D., and Polson, P. G. An approach to the
formal analysis of user complexity. Int. J. of Man-
Machine Studies, 22 (1985), 365-394.

8. Kintsch, W. The role of knowledge in discourse
comprehension: A construction-integration model.
Psychological Review, 95 (1988), 163-182.

9. Kitajima, M. A formal representation system for the
human- computer interaction process. Int. J. Man-
Machine Studies, 30 (1989), 669-696.

10. Larkin, J. H. Display-based problem solving. In D.
Klahr and K. Kotovsky (Eds.). Complex Information
Processing: The Impact of Herbert A. Simon.
Lawrence Erlbaum Assoc, Hillsdale, New Jersey,
1989, 319-342.

11. Larkin, J.H., and Simon, H.A. Why a diagram is
(sometimes) worth 10,000 words. Cognitive Science,
11 (1987), 65-100.

12. Mannes, S. M., and Kintsch, W. Routine
computing tasks: Planning as Understanding.
Cognitive Science, 15 (1991), 305-342.

13. Mayes, J.T., Draper, S.W., McGregor, M.A., and
Oatley, K. Information flow in a user interface: the
effect of experience and context on the recall of
MacWrite screens. In People and Computer IV, D.M.
Jones and R. Einder, Eds., Cambridge University
Press, Cambridge, UK., 1988.

14. Norman, D.A. Categorization of action slips.
Psychological Review , 88 (1981), 1-15.

15. Payne, S. J. Display-based action at the user
interface, Int. J. of Man-Machine Studies, 35 (1991),
275-289.

16. Raaijmaker, J. G., and Shiffrin, R. M. Search of
associative memory. Psychological Review, 88,
1981, 93-134.

17. Selz, O. The laws of cognitive activity, productive
and reproductive: A condensed version. In Frijda,
N.H. and De Groot, A. Otto Selz: His Contribution
to Psychology. Mouton Publishers, The Hague, The
Netherlands, 1990, 20-75.

18. Wharton, C., and Lewis, C. Soar and construction-
integration model: Pressing a button in two cognitive
architectures. Technical Report #CU-CS-466-90.
Department of Computer Science, University of
Colorado, Boulder CO., 1990.

Pointer-Shape is Arrow.
Pointer-Shape is not I-beam.

Pointer is pointing at Graph-Title.

Legend-of-Graph is on screen.
 Legend-of-Graph is Display-Object.
 Legend-of-Graph is a kind of Legend.

Y-Label is on screen.
 Y-Label is Display-Object.
 Y-Label is a kind of Vertical-Label.

X-Label is on screen.
 X-Label is Display-Object.
 X-Label is a kind of Horizontal-Label.

X-Axis is on screen.
 X-Axis is Display-Object.
 X-Axis is a kind of Horizontal-Axis.

Y-Axis is on screen.
 Y-Axis is Display-Object.
 Y-Axis is a kind of Vertical-Axis.

Example-Data is on screen.
 Example-Data is Display-Object.
 Example-Data is a kind of Spreadsheet-Data.
 Column-1 holds Observed.
 Column-2 holds Predictsd.
 Column-3 holds Serial-Position.

Line-Graph-Plot is on screen.
 Line-Graph-Plot is Display-Object.
 Line-Graph-Plot is a kind of Line-Graph.

Graph-Title is on screen.
 Graph-Title is Display-Object.
 Graph-Title is a kind of Title.

Edit-in-Menu-Bar is on screen.
 Edit-in-Menu-Bar is Display-Object.
 Edit-in-Menu-Bar is a kind of Menu-Item.

Menu-Bar is on screen.
 Menu-Bar is Display-Object.
 Menu-Bar is a kind of Menu.

Example-Data-Icon is on screen.
 Example-Data-Icon is
 Display-Object.
 Example-Data-Icon is a kind of
 Application-Data-Icon.

Kitajima-Polson-Icon is on screen.
 Kitajima-Polson-Icon is
 Display-Object.
 Kitajima-Polson-Icon is a kind of
 Document-Folder-Icon.

Mouse exists.
 Mouse possesses Pointer.
 Mouse possesses Button.

Desktop exists.

Figure 2. The propositional representation of the display shown in Figure 1 that is input into the model. See text for a
description of the propositional notation.

Graph has Title.

Graph has Horizontal-Axis.
 Horozontal-Axis has Horizontal-Label.
 Hortizontal-Label is a kind of Label.

Graph has Legend.

X-Axis has link to Edit-Dialog-Box.
X-Axis is not a kind of Text.

Legend-of-Graph has link to Edit-Dialog-Box.
Legend-of-Graph afford to Grab for Move.
Legend-of-Graph is not a kind of Text.

Y-Label has link to Edit-Dialog-Box.
Y-Label afford to Grab for Move.
Y-Label is not a kind of Text.

Graph has Vertical-Axis.
 Vertical-Axis has Vertical-Label.
 Vertical-Label is a kind of Label.

X-Label has link to Edit-Dialog-Box.
X-Label afford to Grab for Move.
X-Label is not a kind of Text.

Y-Axis has link to Edit-Dialog-Box.
Y-Axis is not a kind of Text.

Y

X

TITLE

LEGEND

Graph has Graph-Type.
 Line-Graph is a kind of Graph-Type.
 Line-Graph has Point-Shape.
 Line-Graph has Line.
 Line has Thickness.
 Line has Line-Type.
 Scatter-Graph is a kind of Graph-Type.
 Pie-Graph is a kind of Graph-Type.

Graph-Title has link to Edit-Dialog-Box.
Graph-Title afford to Grab for Move.
Graph-Title is not a kind of Text.

Figure 3. Example of representation in long-term memory concerning graphical domain knowledge.

