
A Comprehension-Based Model of Exploration

Muneo Kitajima
National Institute of

Bioscience and Human-Technology
1-1 Higashi Tsukuba Ibaraki 305, JAPAN

Tel: +81 (298) 54-6730
E-mail: kitajima@nibh.go.jp

Peter G. Polson
Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0345, USA

Tel: +1 (303) 492-5622
E-mail: ppolson@psych.colorado.edu

ABSTRACT
This paper describes a comprehension-based model of how
experienced Macintosh users learn a new application by
doing a task presented as a series of exercises. A
comprehension mechanism transforms written instructions
into goals that control an action planning process proposed
by Kitajima and Polson [11]. The transformation process is
based on a theory of solving word problems developed by
Kintsch [8,9]. The comprehension and action planning
processes define constraints on the wording of effective
instructions. The combined model is evaluated using data
from Franzke [3]. We discuss implications of these results
for Minimalist Instructions [1] and Cognitive
Walkthroughs [17].

Keywords
cognitive theory; display-based systems; exploration

INTRODUCTION
The goal of this article is to describe the LICAI1 model,
which extends the Kitajima and Polson [11] action
planning model of skilled, display-based, human–computer
interaction to account for learning by exploration. Learning
by exploration involves discovering how to do a novel task
by generalizing from past experience or by searching
successfully for a correct action sequence. The LICAI model
describes how experienced Macintosh users accomplish a
task using a new application by doing a series of exercises.
These users are familiar with the standard Macintosh
interface conventions. They must combine their existing
knowledge of the interface conventions with the task
described in each exercise to generate the actions required
by the new application to perform each task.

The LICAI model incorporates processes from Kintsch’s
[8,9] theory of text comprehension. The LICAI model uses
comprehension strategies to transform written instructions
into goals. In this paper, we propose three comprehension

strategies in the form of schemata. Schemata are specialized
knowledge structures whose slots are filled with crucial
elements extracted from the instructions. The output of the
comprehension processes are goals that control the action
generation processes.

The LICAI model uses the action planning processes
developed by Kitajima and Polson [11]. Their action
planning model can simulate the behavior of skilled users
interacting with a graphing application hosted on the
Macintosh. The comprehension-based model of goal
formation processes and the model of action planning
processes are combined to describe the behavior of
experienced Macintosh users learning a new application.
The LICAI model defines constraints on the wording of
effective instructions.

The LICAI model is evaluated using data from Franzke [3],
who had experienced Macintosh users do a graphing task
using one of three different graphing applications with
which they had no prior experience. The graphing task was
presented to users as a series of exercises. The instructions
for each exercise contained no information about the action
sequences required to complete each subtask. Franzke’s [3]
experimental task is similar to actual learning and use of an
application. Users formulate tasks for themselves or are
given written specification for a new task.

Franzke [3] found large variations in difficulty of subtasks
both within and across different applications. We argue that
Franzke’s [3] participants had to comprehend the goal of
each exercise and then infer, or try to discover by
exploration the action sequence that would accomplish the
goal. The goal formation processes attempted to build
specialized goals required by Kitajima and Polson’s action
planning model [11] to generate correct actions for a
subtask. These goal structures provided links between

1 LICAI is acronym for the LInked model of
Comprehension-based Action planning and Instruction
taking. When LICAI is pronounced like “Lee CHI (χ),”
the pronunciation represents the two-kanji character
Japanese word, , which means comprehension.

users’ understanding of a subtask and the low-level details
of the interface to the new application, (e.g., menu labels).

Building these linking goal structures is a difficult and
highly specialized comprehension task, analogous to
processes required to successfully solve word problems
studied by Kintsch [8,9]. The goal formation processes can
fail. Users may not have all of the necessary comprehension
strategies and/or knowledge about the task or about the
application interface. Our theoretical analysis of Franzke’s
[3] results refines and extends her analyses, which were
based on the model of learning by exploration [17]
underlying the Cognitive Walkthrough [18,19].

Previous Research
The LICAI model characterizes skilled performance as
involving comprehension processes that map an initial task
description onto a specialized problem-solving
representation. Greeno and Simon [4] showed that such
mapping processes are a recurrent theme in the problem-
solving literature. A good example is Hayes and Simon’s
[5] model of solving simple laboratory problems (e.g.,
tower of Hanoi and water jugs) described to participants in
written instructions. Their model took as input the problem
text and mapped it onto the representation required by the
General Problem Solver [2] to solve the problem. Howes
and Young [6] developed a SOAR model that analyzed
interactions among the content of instructions given during
learning by exploration, the details of the interface, and
users’ background knowledge.

Outline of the Paper
The next section describes the theoretical foundations and
the action planning model of skilled, display-based
human–computer interaction developed by Kitajima and
Polson [11] and summarizes the results of a series of
simulation experiments reported by Kitajima [10]. We then
describe our comprehension-based model of goal formation
that maps an initial description of a task onto the specific
goals required by Kitajima and Polson’s [11] action
generation process. We evaluate the LICAI model using
Franzke’s [3] results. Finally, we summarize the
implications of our results for practice. These results have
importation implications for the design of interfaces and
training materials that support learning by exploration [18]
[1].

ACTION PLANNING MODEL OF DISPLAY-BASED
HUMAN–COMPUTER INTERACTION
Kitajima and Polson’s [11] model of action planning is
synthetic in that it attempts to integrate the views of
numerous researchers on the nature of display-based,
human–computer interaction (e.g., [7]), theoretical ideas
about the nature of display-based problem-solving (e.g.,
[13]), action planning [15], and task and device
representations [16].

There are two core ideas underlying the action planning
model. First, Kitajima and Polson [11] proposed that
display-based HCI is analogous to text comprehension. In
reading text, readers use large amounts of knowledge to
comprehend the meaning of texts. In display-based HCI,

users must comprehend the display and then select
appropriate actions with the help of knowledge about the
interface, the task to be performed, and so on. Second, the
model is mapped onto Hutchins et al.’s [7] analysis of
direct manipulation based on their action theory framework.
This framework describes action planning as a goal driven
process that evaluates the consequences of the last action
and then generates the next action to be executed (see
Figure 1).

Display-Based HCI and Text Comprehension
The action planning model implements a version of the
action theory framework by extending Mannes and
Kintsch’s [15] theory of action planning, which is based on
Kintsch’s [8] construction–integration model of text
comprehension. Kintsch proposed a model of
comprehension that combines elements of symbolic and
connectionist models of cognitive processes. Text
comprehension is a cyclic process where readers process a
sentence, or the major constituent of a longer sentence,
during a single cycle; reading a text involves a sequence of
such cycles. On each construction–integration cycle, the
model takes as input a representation of the reader’s goals,
key elements of the text comprehended so far, and a
propositional representation of the next sentence or major
sentence fragment. Kintsch’s model outputs a representation
of this latest sentence or fragment consistent with the
reader’s goals and the context provided by the previous
text.

The construction–integration cycle is a two-phase process.
In the first phase, a network of propositions is created that
contains possible alternative meanings of the current
sentence or fragment. The construction process generates an
associative network whose nodes are propositions
representing the input text, the meanings of words in the
input text retrieved from long-term memory, the current
context, and the reader’s goals. Construction is a bottom-
up process that is not guided by context. Thus, at the end
of the construction process, the model has multiple possible
meanings for the input text.

The integration process, the second phase, selects an
interpretation of the input sentence consistent with the
current context and the reader’s goals. The integration
process is connectionist in nature and uses a spreading
activation mechanism. The most highly activated nodes in
the network represent the reader’s interpretation.

Mannes and Kintsch [15] extended the
construction–integration theory to action planning. Their
task domain was human–computer interaction. Their
action-planning model took as input a representation of
users’ or planners’ goals, a propositional representation of
the text containing the task description, and a very
schematic representation of the task context. Their model
generated the commands required to perform the task
described in the text. Mannes and Kintsch argued that text
comprehension and action planning can be conceived as
similar tasks. Readers and planners must integrate their
goals and information from other diverse sources to select

one out of many alternative interpretations of a text or one
out of many competing plans for action.

Kitajima and Polson’s Model of Action Planning
Kitajima and Polson [11] developed an action planning
model of display-based HCI based on Mannes and
Kintsch’s [15] construction–integration model of action
planning, mapped onto the action cycle theory framework of
Hutchins et al. [7]. The outline of the Kitajima and Polson
model is shown in Figure 1.

Example Task
We will describe the action planning model by tracing its
behavior during part of the task involving drawing a line
graph for data contained in a table with columns labeled
with variable names. The example plotting task is
represented as follows:

Plotting-task: Plot numbers in the column labeled
‘Observed’ as a function of numbers in the column
labeled ‘Serial Position’ (1)

Users first select a graph type from a pull-down menu,
causing the dialog box in Figure 2 to appear. The column
labels are displayed in two scrolling lists. Note that the
label Serial Position appears in both X and Y axis scrolling
lists. The dialog box partially occludes the table, but the
column of numbers labeled Serial Position is visible in the
background. To plot Observed as a function of Serial
Position, users must click on and highlight Serial Position
in the X-axis scrolling list and Observed in the Y-axis
scrolling list. Finally, users point at the button New Plot
and single-click it.

Goals
Kitajima and Polson’s [11] action planning model assumes
that skilled users have a schematic representation of the task
in the form of a hierarchical structure involving two kinds of
goals: task goals and device goals [16]. They assumed that
each task goal is associated with one or more device goals.
The device goals specify device states that must be achieved
to satisfy an associated task goal. When the action planning
model is provided with a new display, the model retrieves
task and device goals. The task and device goals were:

Task goal: Perform “Put Serial Position on the X-
axis” (2)

Device goal: Realize “Serial-Position-in-X-axis-
scrolling-list is-highlighted” (3)

The Evaluation Stage
The action planning model is given a representation of a
new display in the form of a large collection of screen
objects; each screen object is described by several
propositions. These descriptions include only limited
information about the identity of each object and its
appearance, including visual attributes (e.g., color,
highlighting).

The model simulates Hutchins et al.’s [7] evaluation stage
(shown in Figure 1) by elaborating the display
representation with knowledge retrieved from long-term
memory. The retrieval cues are the task and device goals
and the propositions representing the current display. The

probability that a cue retrieves a particular proposition
representing a piece of knowledge in long-term memory is
proportional to the strength of the link between them. The
propositions in long-term memory represent knowledge
about the screen objects. For example, if Object23 is the
scrolling list item labeled Serial Position, then the
following knowledge items are stored in long-term memory
about Object23: Object23 has-label Serial Position;
Object23 is-a-member-of Line-Graph-Dialog-Box; Object23
can-be-pointed-at; Object23 can-be-selected. The
elaboration process is stochastic and is taken from Kintsch
[8]. Kitajima and Polson [11] discussed in detail the
predictions and implications that follow from this stochastic
elaboration process.

The Execution Stage
The execution stage of Hutchins et al.’s framework [7] is
modeled by two construction–integration cycles. The first
construction–integration cycle selects three screen objects as
possible candidates for action. An important feature of the
Kitajima and Polson’s [11] action planning model is that
the display representation is a detailed description of an
actual large format display. Thus, the model’s display
representation can incorporate up to 100 screen objects. All
screen objects are candidates for possible actions. During

THE WORLD

ACTION

CYCLE

STAGE OF EVALUATIONSTAGE OF EXECUTION

TASK GOALS
DEVICE GOALS

GENERATION OF
DISPLAY REPRESENTATION

ELABORATION OF
DISPLAY REPRESENTATION

SELECTION OF
CANDIDATE OBJECTS

SELECTION OF
COGNITIVE ACTION

Figure 1. The action planning model of correct performance
and errors in skilled, display-based HCI [11].

Figure 2. Example task.

the initial construction phase, representations of all screen
objects are combined with the goals and the elaborated
display representation to construct the network. When the
integration process converges, the model selects the three
most highly activated screen objects as candidates for the
next action.

This process is dominated by two factors. First, strong
links from the goals to propositions in the network that
share arguments with the goals, and second, the number of
propositions necessary to link goals to candidate objects.
As a result, the action planning model selects candidate
objects closely related to the task and device goals. Device
goals can directly specify a screen object, and thus can be
directly linked to the screen object represented in the
network. Task goals can be linked to screen objects through
labels. Thus, the task goal shown in (2) is linked to the
object representing the variable Serial Position in the X-
axis scrolling list by the overlap of the labels that are part of
the display representation.

The second construction–integration cycle selects an action
to be performed on one of the three candidate objects.
During the construction phase of this second cycle, the
model generates a network with representations of all
possible actions on each candidate object. Examples would
include single-clicking and moving the screen object
labeled Serial Position in the X-axis scrolling list. At the
end of the second integration phase, the action planning
model selects the most highly activated object–action pair
as the next action to be executed. The process is dominated
by the same two factors described above. However, the
relevant interaction knowledge must be retrieved during the
evaluation stage. For example, the action planning model
must retrieve the fact that objects in the scrolling list can be
selected.

Goal Specificity
Kitajima and Polson [11] assumed that they were modeling
skilled users of the graphing package, and they gave the
action planning model the very explicit goals required,
examples of which are shown in (2) and (3). In a series of
simulation experiments reported by Kitajima [10], we
explored whether the model could successfully perform
tasks with vague, incomplete, or even missing goals. Our
initial conjecture was that users of a new application would
have some understanding of the tasks they were going to
perform, and they would be able to formulate more-or-less
complete task goals. However, new users would not be able
to formulate the precise device goals required, because they
had never interacted with the application before.

The Kitajima [10] simulations focused on the two actions
related to the task and device goals given in (2) and (3).
The correct action sequence involved moving the mouse
cursor to point at the label Serial Position in the X-axis
scrolling list, followed by single-clicking on that object.
The simulation experiments started with a display
representation defined by Figure 2, and then the model
attempted to perform the sequence of correct actions.

Kitajima [10] found that the action planning model can
reliably generate the correct action sequence with no device
goal. However, the task goal had to be stated exactly as
given in (2). A perfectly reasonable task goal like “Plot
Observed as a function of Serial Position” does not work.
Kitajima [10] concluded from his simulations that the task
goal had to be directly linked to the labels for the X-axis
scrolling list and for the correct object in that scrolling list.

Furthermore, Kitajima [10] found an effect of number of
competing screen objects. If the model was required to
make the correct actions with a screen representation that
included both the dialog box as well as the data table in the
background with the distracting label Serial Position, these
additional distracting objects prevented the action planning
model from successfully generating the correct action
sequence. However, limiting the focus of attention to the
nine screen objects defined by the dialog box shown in
Figure 2 enabled the specific task goal shown in (2) to
generate the correct action sequence.

The action planning model always performed the correct
actions given the device goal (3). The direct link between
the device goal and the correct screen object caused the
model to include the correct screen object in the list of the
three candidate screen objects during the first phase of the
execution stage. During the second phase, when selecting
the correct action, information retrieved from long-term
memory enabled the model to decide that the only possible
action was to single-click on this object. The action
planning model performed the task perfectly because the
correct action was the only possible action.

A COMPREHENSION-BASED MODEL OF GOAL
FORMATION
Kitajima’s [10] results show that we can extend Kitajima
and Polson’s [11] original action planning model to
account for people with a lot of background experience
learning a novel application by describing how they
formulate very specific task and device goals. Our goal-
formation model assumes that this process is analogous to
solving word-problems. The text comprehension processes
take a semantic representation of the next task as input and
combine this representation with highly specialized
background knowledge to generate the required task goals.
Device goals are acquired by interacting with the interface.

Problem Schemata for HCI
Task and interface specific problem schemata guide the
transformation of the semantic representation of the original
problem description and experiences of interacting with the
program into a useful problem model (i.e., correct task and
device goals). Problem schema is a notion proposed by
Kintsch and Greeno [9] and further amplified by Kintsch
[8]. A schema is a knowledge structure that takes a
semantic representation of instructions as input and
generates one or more specialized propositions defined by a
predicate and slots with strong constraints on the
admissible arguments.

The original problem statement “Plot Observed as a
function of Serial Position” is transformed by two task
specific problem schemata associated with the task Plot:

Put variable-label1 on X-axis (4)
Put variable-label2 on Y-axis (5)

In addition, specialized comprehension knowledge
incorporated into the schema is required to fill the slots
(i.e., “as a function of” means that the variable label before
the phrase is put in the Y-axis slot, and the variable after
the phrase is put in the X-axis slot). In the following
section, we propose problem schemata that map
instructions into task and device goals.

Schemata for Task Goal Formation
We assume two general schemata for task goal formation.
The schemata construct propositions of the form (perform
action object) which are used as task goals to generate
associated actions.

TASK Schema
The TASK schema takes the original task instructions and
transforms them into one or more propositions representing
a task goal. This set of propositions is of the form,
“perform task-action on task-object with additional task-
specification,” where both task-action and task-objects are
constrained to be concepts for the task-domain. For
example, transforming (4) generates the following instance
of a TASK schema:

TASK schema
task-action: put
task-object: Serial Position
task-specification: on X-axis

The resulting task goal description is represented by two
propositions: (perform put Serial_Position) and (location-of
Serial_Position on_X-axis). Kitajima and Polson’s [11]
action planning processes then generates the sequence of
actions that achieve this task goal.

The transformations performed by the TASK schema can be
complex. The original task instructions can contain
information irrelevant to the task goal, and thus the TASK
schema must summarize the instructions to generate a task
goal. The transformation shown in the above example is a
simple paraphrase into a form that links directly to the
labels of screen objects defined by the interface. The TASK
schema can also generate necessary elaborations of terse
instructions.

DO-IT Schema
In Franzke’s [3] experiment, if participants were not making
any progress on a subtask, they were given hints like
“Click on Serial Position in the X-axis scrolling list.”
Observe that following such an instruction involves
nontrivial inferences. ‘Click on’ must be mapped onto the
action: Single-click with the mouse button after moving the
mouse cursor to the required screen object. Serial Position
must be mapped onto the screen object with the label Serial
Position that is in the X-axis scrolling list.

The DO-IT schema maps instructions that describe a single
legal action for the interface on a screen object with various
attributes into a description of the form “perform device-
action on device-object with additional device-
specification.” For example, the instruction, “Click on
Serial Position in the X-axis scrolling list,” is transformed
into the following instance of the DO-IT schema:

DO-IT schema
device-action: single-click
device-object: $; variable undefined

ID: scrolling-list-item
attribute

label: Serial Position
location: X-axis scrolling list

The resulting task goal is the following set of propositions:
(perform single-click $), (isa $ scrolling-list-item), (has-
label $ Serial_Position), (location-of $ X-
axis_scrolling_list). Observe that this task goal specifies a
single action. It’s arguments link to the screen
representation and action representation. The action
planning processes can generate the specified step.

Schema for Device Goal Formation
It is unlikely that new users of an application would
generate descriptions of a novel task that could be
transformed by a schema into a device goal. Generating
such descriptions requires detailed knowledge of the
interface that can be only obtained by interacting with the
particular application. For example, to be able to infer the
device goal shown in (3) from the task description (1), users
must know that a screen object labeled by the variable to be
placed on the X-axis will be displayed as a scrolling list
item and that this scrolling list item should be highlighted.

The DEVICE Schema transforms experiences interacting
with the interface into device goals. The schema generates
one or more propositions of the form “realize device-object
is-in-device-state with additional device-specification.” The
result is a device goal like (3). For example, the experience
of successfully highlighting Serial Position in the X-axis
scrolling list generates the following instance of the
DEVICE schema:

DEVICE schema
device-object: Object23

ID: list-item
attribute

label: Serial Position
location: X-axis scrolling list
display-state:highlighted

associated-task-goal: perform “put Serial
Position on X-axis”

Experienced users employ the current task goal and / or
display as a cue to retrieve device goals from long-term
memory.

EVALUATION OF THE LICAI MODEL
In this section, we evaluate the LICAI model using data
from Franzke [3]. Experienced Macintosh users were given
the task of creating a new graph with a novel graphing

application, Cricket Graph I2 or III3, or one of two forms of
the EXCEL 3.04 interface. The graphing task was divided
into two subtasks. The first was to create a default line
graph by opening a document containing the data to be
plotted, selecting the correct graph style (e.g., line graph)
from a menu, and assigning the designated variables to the
X- and Y-axis. The second subtask was to edit the default
line graph. The edits were done in a specific order. The
descriptions of the edits were very terse. Participants learned
to do subtasks by exploration. If they had not made any
progress toward the next correct action for more than 2
minutes on a particular step, they were given brief hints like
“select line graph from the graph menu,” or “double-click
on legend text.”

The goal formation processes of the LICAI model have been
simulated using Franzke's [3] experimental paradigm [12].
The LICAI model only makes course grain predictions
about the behavior of Franzke’s participants. The
instructions and the schemata assumed by the model may
or may not enable participants to generate the correct task
goal. If they generate the correct task goal, the action
planning processes will generate the correct action sequence.
However, the LICAI model does not describe the search
behavior that occurs if the task goal construction process
fails. We account for the initial success or failure of the goal
formulation process. If instructions for a given exercise
contain the necessary information, the comprehension
processes will generate the goals that enable the action
planning processes to generate the correct action sequence
for the exercise. Thus, the LICAI model partitions the
exercises given to Franzke’s participants to tasks that can
be done with little or no trial-and-error search and those that
the model cannot perform because it can’t generate the
necessary task goal from the instructions. However, the
model is able to generate a qualitative account of Franzke’s
results.

Label Following
Franzke [3] found strong support for the label following
strategy [17,18] (see Figure 5 in Franzke [3]). Participants
used overlap between task descriptions contained in
instructions with labels on menus, buttons and other
interface objects when learning by exploration. The degree
of success of the label following strategy depended on the
quality of the label and on the number of competing screen
objects. Franzke [3] (Figure 7) obtained an interaction
between number of objects (2 – 10) on the screen and
quality of the label match (good, poor). There was no effects
of number of objects for good labels and a large effect for
poor labels. A unique, good label caused the user to attend
to the correct screen object independent of the number of
competing screen objects.

Label following is consistent with the LICAI model. If
instructions contained a description of either an action or an

2 CA Cricket Graph, version 1.3.2, 1989.
3 CA Cricket Graph III, version 1.01, 1992.
4 MS EXCEL, version 3.0, 1990.

object that matched a screen object label, those labels were
preserved when the propositional representation of the
instructions was mapped into a task goal. The links
between the task goal and the correct screen object can
mediate performance of the correct action if participants have
the necessary knowledge about the screen object.

Direct Manipulation
Franzke [3] also found that participants had trouble on their
first encounter with direct manipulation actions like double-
click to gain access to an editing dialog box. Kitajima and
Polson’s [11] action planning model of skilled performance
successfully performed such actions. The action planning
model had propositions describing links among actions like
double-clicking and tasks like edit for each object.
Franzke’s [3] participants did not have the knowledge that
would enable them to infer that an object’s attributes could
be manipulated by double-clicking on it.

Use of DO-IT Schema
In navigating through the instructions or responding to
hints, participants received instructions that described one
or more legal actions on a screen object. No participant had
any trouble following these instructions. Such instructions
are mapped into specific task goals using the DO-IT
schema. The resulting task goal is specific enough to enable
the action planning process to select the correct
object–action pair.

Use of TASK Schema
Participants were asked to “change the legend text to:
Geneva, 9, bold.” To accomplish this and related tasks in
Cricket Graph I, participants had to first double-click on the
appropriate text screen object, which opened a dialog box.
This dialog box contained a copy of the title-text and three
scrolling lists labeled font, size, and style.

Because all participants were experienced Word users, we
can assume that they had the knowledge necessary to
elaborate this cryptic instruction by assigning appropriate
attributes to Geneva, 9, bold, and knowledge to transform
them using the TASK schema into a series of subtask goals
for font, size, and style. The following is the TASK schema
instance for font:

TASK schema
task-action: change
task-object: legend-text
task-specification

attribute: font
target: Geneva

Observe that the task instructions do not give any support
for finding access to the action double-click.

Franzke [3] found that almost all her participants had to be
given a hint to double-click on legend-text. There was no
evidence that they had any difficulty forming the correct task
goal, change the legend-text. The screen object representing
legend-text could easily be identified if participants had
general knowledge about graphs. The task goal overlapped
with the label for that screen object, so the action planning
model would include the correct screen object as one of the

three candidate screen objects for action. Participants did
not know that the legend-text could be double-clicked, or
that to edit the legend-text, it must be double-clicked.
Thus, there was no link between the action specified by the
task goal, change, and the action required by the device to
complete this task, double-click. However, the action
planning model will never generate the correct action
without these links.

Once the dialog box was open, participants had no trouble
completing the task. This result is consistent with the
LICAI model’s behavior. The model can perform each
subtask specified by the instruction because the subtask
goals link directly to a scrolling list title and to the relevant
item in the scrolling list.

Use of DEVICE Schema
Franzke’s [3] participants did the graphing task twice. Half
did the task again after a 5-min. delay, and the remainder
returned in one week. The LICAI model has no learning
mechanisms, but participants probably would remember
successful task and device goals generated by the various
schemata. They would have some chance of remembering
hints provided by the experimenter.

There were large practice effects. Mean task completion
times dropped from about 15 min. for the first attempt on
the task to about 7 min. on the second attempt. There was
a small effect of delay of about 1.5 min. Most
improvements resulting from practice were found on tasks
where terms used in the instructions did not mach labels on
the interface (see ref. [3], figures 5, 6, 7, and 8).

Consider the subtask of moving the legend. A significant
number of participants had some difficulty with this task
during the first session. When this difficulty occurred, the
experimenter gave a hint, “Grab the legend which is to the
right of the plot symbol, open circle, labeled as Observed.”
The hint would be comprehended by instantiating DO-IT
schema, and the results of performing the hint would be
encoded by the following instance of the DEVICE schema:

DEVICE schema
device-object: Object56

ID: legend-text
attribute

label: Observed
display state: grabbed

associated-task-goal: perform “move legend”

Object56 represents the legend-text on the graph.
Participants would also acquire knowledge that would
enable them to correctly recognize new objects as a legend.
During the second session, respondents were asked to do
the same task ‘move the legend,’ but with different graph
and data. The TASK schema would generate the identical
task goal, which would serve as a retrieval cue for device
goal. Participants would have acquired knowledge to
recognize Object67 as legend and replace Object56 with
Object67.

In summary, the large improvements in performance that
Franzke [3] observed resulted from improvements on

subtasks where the TASK or DO-IT schemata could not
generate an effective task goal. One result of successfully
performing the interaction is to gain information required by
the DEVICE schema to generate the correct device goal.
Participants were likely to retrieve these device goals on the
second attempt at the task. Kitajima [10] showed that the
action planning model always performed correctly when
given the correct device goal.

CONCLUSION
We developed and evaluated the LICAI model of display-
based human–computer interaction that has goal formation
processes and action planning processes, both based on the
construction–integration model. The goal formation
processes transform initial task descriptions into the precise
goals that enable the action planning processes to generate
the correct actions. These processes are specialized
comprehension strategies that employ task and interface
specific schemata to construct goals. The action planning
processes use representations strongly constrained by the
superficial details of the interface (i.e., labels, menus, and
buttons) and the interaction conventions of the host
operating system. The goal formation processes must
transform task descriptions into goals that link directly to
the action planning representations. Most of the power and
flexibility of this LICAI model is in the goal formation
component.

Implication for Learning by Exploration
Our results have important implications for the
development of training materials that support learning by
exploration. Carroll [1] summarized an influential research
program on the design and evaluation of training materials
for application programs. This program led to the
development of the Minimalist Instruction paradigm. The
minimalist approach focuses on users’ tasks rather than on
describing a system function by function, minimizes the
amount of written material, tries to foster learning by
exploration rather than attempting to provide detailed step-
by-step instructions, and supports error recognition and
recovery.

The development of the Minimalist Instruction paradigm
was stimulated by the then-surprising result that detailed
and carefully designed training and reference materials for
early versions of word-processors were unusable (e.g., [14]).
This result is not surprising in light of research on word
problems and the LICAI model. Mack et al.’s [14]
participants did not have the necessary schemata or action
planning knowledge, and attempts to include explicitly all
necessary background information lead to long and
confusing documentation for these new users.

Our LICAI model suggests that strong constraints on the
content of instructional materials exist. Materials generated
by minimalist design heuristics are constrained by the
interface to an application and users’ background
knowledge. Although minimalist instructional materials are
designed to support learning by exploration, the interface
also must facilitate learning by exploration. Otherwise,
instructional materials must provide a step-by-step
description of how to perform every task. Carroll [1] and his

collaborators have shown that most users are unwilling to
read such detailed instructions, and users have a great deal
of difficulty even if they try to use the step-by-step
instructions.

Our LICAI model can be used to develop explicit design
guidelines for content. The model’s focus on task goals is
consistent with the minimalist paradigm. The model makes
very clear the kinds of constraints that must be understood
in following Carroll’s [1] design heuristic of minimizing
the amount of written material. We showed that
comprehending the very terse instructions used by Franzke
[3] required specialized background knowledge about task
and interface. “Change the legend text to: Geneva, 9, bold”
cannot be understood by someone who has no experience
with a modern word-processor. Effectively minimizing the
amount of written material requires careful attention to the
action and display knowledge and schemata assumed in the
user population. A minimalist version of a complete
manual for a modern word-processor would have to assume
that users have the TASK and DO-IT schemata described in
this paper.

The analysis presented in this article strongly reinforces the
importance of the label following strategy. In addition, it
shows that even when a correct task goal is generated by
instantiating TASK and/or DO-IT schemata, a significant
amount of background knowledge is needed to select correct
actions. These results provide support for the Cognitive
Walkthrough [19] methodology, which evaluates the
effectiveness of the label following strategy and characterizes
the background knowledge necessary to infer correct actions,
serving as a design evaluation technique for application
interfaces that support learning by exploration.

ACKNOWLEDGMENTS
The authors gratefully acknowledge research support from
the National Science Foundation Grant IRI 91-16640. We
thank Walter Kintsch and Clayton Lewis for ideas,
direction, and comments on earlier versions of this paper.

REFERENCES
1. Carroll, J. M. The Nuremberg Funnel: Designing

Minimalist Instruction for Practical Computer Skills.
MIT Press, Cambridge, Mass., 1990.

2. Ernst, G.W., and Newell, A. GPS: A Case Study in
Generality and Problem Solving. Academic Press,
New York, 1969.

3. Franzke, M. Turning research into practice:
characteristics of display-Based interaction. In
Proceedings of CHI ’95, 421–428. ACM, New York,
1995.

4. Greeno, J.G., and Simon, H.A. Problem solving and
reasoning. In R.C. Atkinson, R. Herrnstein, G.
Lindzey, and R.D. Luce, eds., Steven's Handbook of
Experimental Psychology, 589–639. John Wiley and
Sons, New York, 1988.

5. Hayes, J. R., and Simon, H.A. Understanding
problem instructions. In L.W. Gregg, ed., Knowledge
and Cognition. Erlbaum, Hillsdale, N.J., 1974.

6. Howes, A., and Young, R. Learning consistent,
interactive, and meaningful task-action mappings: a
computational model. Cognitive Science (in press).

7. Hutchins, E.L., Hollan, J.D., and Norman, D.A.
Direct manipulation interfaces. In D.A. Norman, and
S.W. Draper, eds., User Centered System Design,
87–124. Erlbaum, Hillsdale, N.J., 1986.

8. Kintsch, W. The role of knowledge in discourse
comprehension: a construction-integration model.
Psychological Review, 95, 163–182, 1988.

9. Kintsch, W., and Greeno, J.G. Understanding and
solving word arithmetic problems. Psychological
Review, 92, 109–129, 1985.

10. Kitajima, M. Model-based analysis of required
knowledge for successful interaction with complex
display. ICS Technical Report. Institute of Cognitive
Science, University of Colorado, 1995.

11. Kitajima, M., and Polson, P.G. A comprehension-
based model of correct performance and errors in
skilled, display-based human–computer interaction.
International Journal of Human–Computer Systems,
43, 65–99, 1995.

12. Kitajima, M., and Polson, P.G. A comprehension-
based model of exploration. ICS Technical Report.
Institute of Cognitive Science, University of
Colorado, 1995.

13. Larkin, J.H. Display-based problem solving. In D.
Klahr and K. Kotovsky, eds., Complex Information
Processing: The Impact of Herbert A. Simon.
319–342. Erlbaum, Hillsdale, N.J., 1989.

14. Mack, R.L., Lewis, C.H., and Carroll, J.M. Learning
to use word processors: problems and prospects. ACM
Transactions on Office Information Systems, 1,
254–271, 1983.

15. Mannes, S.M., and Kintsch, W. Routine computing
tasks: planning as understanding. Cognitive Science,
15, 305–342, 1991.

16. Payne, S.J., Squibb, H.R., and Howes, A. The nature
of device models: the yoked state hypothesis and
some experiments with text editors.
Human–Computer Interaction, 5, 415–444, 1990.

17. Polson, P.G., and Lewis, C, Theory-based design for
easily learned interfaces. Human–Computer
Interaction, 5, 191–220, 1990.

18. Polson, P.G., Lewis, C., Rieman, J., and Wharton,
C. Cognitive Walkthroughs: a method for theory-
based evaluation of user interfaces. International
Journal of Man-Machine Studies, 36, 741–773, 1992.

19. Wharton, C., Rieman, J., Lewis, C., and Polson, P.
The cognitive walkthrough method: a practitioner’s
guide. In J. Nielsen and R. Mack, eds., Usability
Inspection Methods. John Wiley, New York, 1994.

