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ABSTRACT LICAI+ is an extension ofICAI® (Kitajima & Polson,

This paper presents a model of occasionake of 1996; 1997) which is anodel ofthe processes involved
functions of an application by asxperiencediser of an  in comprehendingtask instructions and using the
environment like Vihdows 95 orthe MacOS. Wehave resulting goals toguide successfukexploration. Both
developed a simulation model, LICAI+, that assumes thatLICAI and LICAI+ are based orKintsch’'s (1986; in
users storepisodicrecords of correcstepsdiscovered by  press)  construction-integration  theory  of  text
exploration or told to them during training. They then use comprehension. LICAl+adds to LICAI the processes
the application displagndtheir goal agetrieval cues in  involved in encoding and successfully retrieving
attempts to recall these episodes later. The mueelicts, encodings of correctactions. LICAI+ assumes that
and supporting data show, that tasks that violate the successfulperformance ofoccasionally performedtasks
label-following strategyare not only hard to learn by involves a mixture of recall oépisodes of correcictions
exploration but alsdlifficult to remember even if the and problem solving if recall fails. The model is related to

correct steps have been previously presented. Ross’ (1984)and Rickard’s (1997) models ofskill
acquisition.

Keywords

cognitive model, learning by exploration, label-following Following a general description of the LICAI+ model, we

strategy, LICAI+ present a theoretically motivated analysis retall of

occasionally performed action sequences. Readers
interested in amore detaileddescriptions of thelLICAl
model shoulcconsult (Kitajima & Polson, 1995; 1996;
1997). In support of the LICAI+model and our
theoretical analysis weompareour simulation results
with data reported byFranzke (1994; 1995)and Soto
(1997). In conclusion, wdescribedesignimplications of
our results. We demonstrate thwetth ease oflearning by
exploration and good recall are supported by siitar
attributes of an interface.

DESCRIPTION OF LICAI+

LICAI+ simulates skilled Mac users in aexperiment
where they are taught novel tasks using a new
application, CrickeGraph Ill. Thetask instructions are
P/ery explicit but do not contain any informatiocsbout
how to perform the task. Then, at somfater time
ranging fromseveralminutes to a week, thegre tested
for retention of theseskills when given the task
descriptions anthe displaysggenerated byhe application
as retrievakcues. Users attempt fmerform eachtask by
exploration and/or recalling an actisequence. However,
hints are given by the experimenter if users cannot
discover correct actions by themselves.

INTRODUCTION

Experienced users of @anvironment like Vihdows 95 or
the MacOSare occasional users of many applications
(e.g., agraphics package}urthermore, many functions
of a frequently usedpplication like aword processor are
only usedoccasionally(e.g., constructingand editing a
table). Thus, alarge majority of the different tasks
undertaken byskilled usersare performed infrequently
(Santhanam & Wiedenbeck, 1993).

Such patterns of eoasional use should constrain the
design of usable computer systerteally, such systems
should consistently support learning by exploration. At a
minimum, they should facilitate memory for action
sequences learned by demonstration or by being looked u
in a manual. Thease ofrecalling infrequentlyperformed
functions can be a major determinateusfbility. This is
not a novel claim. For example, ttdesigners of the
Xerox Star had very similar insights (Bewley, Roberts,
Schroit, & Verplank, 1983;Smith, Irby, Kimball,
Verplank, & Harslem, 1982). Thigpaper presents a
theoretical model of recall diasks thathave beerdone
once or a few times and data supporting the model.

LICAI+ is a model of recall of occasionallysedaction
sequencesLICAI+ assumes that users stoepisodic
records of correcstepsdiscovered byexploration ortold
to themduring training. They then use the application * LICAI is an acronym of the Linked model of

display and their goal as retrieval cues in attempt&tey Comprehension-basedAction planning and Instruction
recall these episodes. The resultingpdel of the resall taking. When LICAI is pronounced [li kai], the
process issimilar to models of textrecall (Wolfe & pronunciation represents a two-kanji Japaneserd,

Kintsch, submitted). A%  meaning tomprehension.’



LICAI simulates comprehension of task instructions and object (e.g., press and hold). The most critical ofttihee

hints, the generation of goalandthe use of these goals

links is the linkbetweenthe goalandthe correctscreen

to discover correct actions by exploration. LICAI+ adds to object. This link can be retrievedrom memory or

LICAI processesthat encode successful actions and
retrieve them after a delay.

Goal Formation

LICAI's action planning processes contain limited
capabilities todiscover correctactions by exploration.
These processeare controlled by goals generated by
comprehendingtask instructions and hints. LICAI
assumes that goal-formation isspecializedorm of the
normal radingprocess in which taskpecific strategies
generate inferencegequired to guide goal formation.
LICAI's goal-formation process iderivedfrom Kintsch’'s
(1988; in press, Chapter 10hodel of word problem
solving.

Kintsch’'s model takes adnput a low-level semantic
representation of problem text, ttextbaseandprocesses
it sentence by sentencehe result is groblem model
Construction of the problemmodel makes extensive use
of comprehension schemata whietaboratethe original
text representation with problem domain specific
inferences.

LICAIl incorporates comprehension schemata
transform relevant parts othe textbase for the task
instructionsand hints into goals that control thaction
planning process. Propositions ttdgscribeactions on
task objects in the textbaswe recognized anéurther
elaborated by specializedask domain schemata to
generate amore complete description of task. For
example, consider a graphitask in which the user was
given the instruction, Plot a variable nan@thserved’ as
a function of a variablemamed‘Serial Position.” LICAI
transformsthis task descriptioninto the propositional

generated by an exploration process.

Skilled Users

Kitajima and Polson (1995) developed aversion of the
action planning processised by skilled users of an
application. Thismodel represents an arbitrasgquence
of actionsrequired toperform atask ashierarchical goal
structure that isretrieved from long-term memory and
used to generate the actions. A tasklesomposeihto a
sequence ofask goals.Task goalsefer toactions(e.g.,
edit) on a task object (e.g., graph titl&achtask goal is
linked to an ordered sequence of onenare devicegoals
Eachdevicegoal specifies ainiqgueobject on thescreen
(e.g., theDptions menu, the graph titlelandthe state of
the object (e.g.highlighted) after it has beenacted on.
Thus, skilled users retrieve the critical linkstween goal
andscreenobject from memoryHowever, Kitajima and
Polson (1995) did not describehow such goakequences
are learned or how they are retrieved from memory.

New Users
When anewuser of an application attempts perform a

that task for the first time, Kitajimaand Polson (1997)

assumedhat theyhave atask goal but not thelevice
goals. LICAIcan sinulate exploration bygenerating the
correct actions for a novel task without the device goals if
the task goatan be linked to correct screebjects by
LICAI's action planning processes.

A task goal is a proposition with twarguments
describing atask actionand atask object (e.g.,hide
legend). If a correcbbject on thescreenhas alabel
representing either one of these conce€ptg., amenu
labeled “hide”),the representation ofhe object will be

representations of two sentences. 1) Put ‘Observed’ on thédinked to the task goal. LICAI willretrieve the correct

y-axis, and 2)Put ‘Serial Position’ on the x-axis. The
representations of thdast two sentencesare then

transformedinto task goals that control the action

planning process. Terwilligerand Polson (1997)

demonstrated that users actually perform this

transformation.

In the studieglescribed inthis paper, experimentegave
hints of the form ‘perform a specific action orspecified
screen object’ (e.g., pull-down the Options menu).

actions (e.g., move the cursor to the obpad press-and-
hold) on this object from long-term memory, completing
the necessary links to generate actions.angnumerous
other researcherdiave called this linking processthe
label-following strategy(Franzke,1994; Franzke, 1995;
Kitajima & Polson, 1997; Polson & Lewis1990;.
Rieman, Young, & Howes, 1996). Thus, thsitical
links can begenerated to mediaticcessful exploration.
The label-following strategy is the onlynethod that

LICAI requires that these text or verbal descriptions of an LICAl has for learning by exploration. Ithere is no

action on an objedtave to be transformddto a goal, a
do-it goal, that specifies apecific object on thescreen
and/or legal actions on that object.Specialized
comprehension schematarry this transformation. See
Kitajima andPolson (1997) for extensive descriptions of
comprehension schemata.

Action Planning
The heart of LICAI isthe action planningprocesses.

directlink betweenthe task goaland the correct object,
users must be given a hint.

LICAI+’s Encoding and Recall Pr ocesses

LICAI already incorporates a model of encodad recall

of goalsbased orthe Kintschand Welsch (1991)model

of text recall. They assumed that the textbasstaged in
episodicmemoryduring the comprehension process. The
strength inepisodic nemory of a given element of the

LICAI assumes that successful action planning involves téxtbase is determined by the number of cyclestays in

linking propositional representations of a godk.qg.,
create a new graph), the screen object tadbed on(e.g.,
theGraph menu),and anaction to beperformed onthat

working memory and the activation levels itachieves

during eachcycle. LICAI+ generalizeghis model to the
encodingand recall of successfuactions. LICAI+ also
incorporatesassumptions from the ®lfe and Kintsch



(submitted) model ofstory recall that enables us to
compute predicted recall probabilities.

Encoding Process

LICAI+ assumes that encoding and storage of a successfl
action is just a special case of the comprehension proces

The model“comprehends’the results of asuccessful
action during training. A comprehension scherreates a
representation othe successful action which &ored in
memory during the comprehension process.

There argwo forms of thisencoding. The firsincludes

the task goal, the object acted on, and results of the actiop

if the label-following strategycan discoverthe correct
action. Thesecond case iglefined bythe failure of the
label-following strategy. Thexperimentergives a hint
which is transformednto ado-it goal by the instruction

comprehension processes. A do-it goal specifies an actiof

on a screembject (e.g., Pull-down th8ptions menu).
The do-it goal isincluded in the encoding of the
successful action in this second case.

LICAI+’s goal formation, action planninggncoding, and

retrieval processeare implemented as special cases of

Kintsch’s (1988; in press) construction-integratibrory
of text comprehension. Each process is modeled by one
more iterations of ageneral construction-integration
cycle.

The following is adescription ofthe encodingand recall
cycles. See Kitajimaand Polson (1997) for detailed
descriptions of the remaining processes.

The construction phase of tleeacoding procesgenerates

a network of propositions that contains the following

representations:

1) the task goal,
2) the do-it goal (if a hint was given),

3) the acted-on object,

4) its label (if the acted-on object is labeled),

5) salient changes inthe display statecaused by the
action (e.g., menu dropped),

6) the displaycaused bythe action (e.g., gull-down
menu),

7) a specialkencoding nodehat links thenodes 1, 2, 3,

4, and 5 with the strengths defined by an analyst.

In addition,the fundamentalinking mechanismassumed
by the construction-integration theory, thergument
overlap mechanism, isapplied to connectany two
propositions in thenetwork sharing arguments. Figure 1
illustrates a networlgeneratedfor encoding astep of
pulling down the Legend menu. This actiorcaused a
pull-down menu toappearwith menu items, Hide,
Show, Move, andArrange.

The integration phase of thencoding process is
performed using a spreading activation process.ribdes
in the network can be partitionethto sources of
activation, targets of activationand links between
sources and targets. In the encoding process, the
representations afcreenobjects, the task goahnd the
do-it goal serve as sources aictivation. In Figure 1,
thesenodes are shadetihe encoding node ighe target.
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Figure 1. A diagram showing the propositional network

geenerated by the construction subprocess in the
encoding process. The dotted lines represent the
argument overlap links. The solid lines connecting nodes,
1 through 5, with the encoding node, 7, are special links
defining the encoding process.

The results of the integration of the netwaire stored in
episodic memory.

At the end of training, episodic memory contains the
nodes representindgpe textbase for the task instructions
and hints, and the nodes participated in encopingesses
for the correct steps. The strengths of lifdetween these
nodes are determined hiie pattern of activation levels
achieved in respective integration processes for text
comprehension and encoding.

Recall Process

The recall process of LICAI+ assumiimat users employ

the task goaknd the current display representation as
retrieval cues. Therecall process retrieves nodes in
episodicmemory thatare linked to these cuedNodes
from episodic memory are sampled with replacenoetil

the model retrieves an encoding of a step or retrieves a do-
it goal (i.e., the action planning representation of a hint).

The predictedsampling distribution for retrievingiodes
from episodic memory for a given set reftrieval cues is
calculated byusing a sampling probability matrix. This
matrix is a fully interconnected matrpeneratedrom the
original episodic memory network. Following dlfe and
Kintsch (submitted), the sampling probability matrix is
generated bywo steps: 1Yividing eachlink strength in
the episodic memory network by the maximunink
strength, 2) for any twaodes linked by an indire@ath,
assigning theproduct ofthe strength values of thenk
segments in the path to their link strength.

Any nodesthat are drectly linkedwith the retrieval cues
in the sampling probability matriare retrievable. The



probability of retrieving aretrievable node in asingle
memory sampling trial is proportional to itslative link
strengths with the retrieval cues.

Sampling is withreplacementand sampling terminates
on retrieval of one ofhe stepencodings or a do-goal.
These assumptionsenable us to calculatéhe recall
probability distribution for stegncodingsanddo-it goals
(recall targets).

Action Planning After Recall

LICAI+ attempts to acusing theretrievedstep encoding

or the hint. If the stegncoding orthe hintgenerates the
correctaction, themodel successfully recalldhe current

step. However, thereare no explicit order cues in the
encoding of each step, so the mockh retrievesteps out
of order orretrievehints thatdon't apply to thecurrent

display. In thiscase, theretrieval procesdails, and the

the hint “pull-down the Options menu” in the hide
legend task, there are only 7 menu items on that menu.

We have used two versions of thigle legendask in the
simulation described inthe following sections. The first
version was a simulation gferforming thehide legend
task using CricketGraph Ill, Version1.5.3 described
above. We willrefer to this as the NLFscenario. The
other version of the simulated task used a hypothetical
version of CricketGraph Ill that added aLegend menu
to the menu bar. The items on this memere Show,
Hide, Move, andArrange. This version of thehide
legend task requirestwo steps(select Hide from the
Legend menu) using this hypothetical interface. Wl
refer to this simulation as the LFscenario. Our
discussion will focus on recall of the first step &ach of
the two versions.

model has to explore the interface again as on the trainingsSIMULATION

trial. The exploration will succeed inperforming the

correctaction if the label-following strategy works for

this step.

AN ANALYSIS OF RECALL OF OCCASIONALLY
PERFORMED TASKS

The basic claim of LICAI+ is that how a step in a task is

A Mathematica program wasevelopedimplementing
processes incorporated inLICAI+ and simulating
responses from Cricket Graph Il for correct actions in the
hide legendtask. Training wassimulated by assuming
that eachstep wasperformedcorrectly with hints given

for the first NLF step. The followingprocesses are

learned, by exploration or with hints, determines how that Simulated for the training: the comprehension process that

step is encoded andretrieved. Thus, we distinguish
betweenlabel-following (LF) steps or tasksand non-
label-following (NLF) steps or tasks/here the label-
following strategy fails for lack oflinking shared
concepts.

Franzke(1994; 1995)and many othershave shown that
LF stepsarerapidly discovered andaccurately” recalled.

generatesgoals and comprehendshints, storage in
episodic memory during comprehension, retrieval of goals
from episodicmemory,andaction planningencoding of
successful actions, and storage in episodic memory.

Representations of the task instructiorfsnts, and
interface displays were codaddinput to thesimulation.
The simulation alsancorporated extensive knowledge

However, it is hard to distinguish between rediscovery andabout the basic Macintoshterfaceconventions foreach

recall of a stemfter one training trialbecauséoth recall
and discovery processes can havamilar latency
distributions.

Soto (1997), in an analysis oflarge number offifferent
graphing tasks using Cricket Graph Bhowedthat NLF
tasks have some LF steps, usually towardethe of their
action sequencesThe task ‘hide legend is agood
example. The first two stepfull-down the Options
menu, and select Show Graph Items...) are NLF
steps. No menu label matches the task goal. thing

step (clear the check box labeled by Legend) is an LF

step. The last stefclick OK) is ahighly over-learned
action that closes aialog box andterminates theaction
sequence.

Rodriguez(1997) and Soto (1997) found that the first
NLF step in thehide legendtask is thesource of the
difficulties that usershave with this task. Almost all
usersrequired ahint to complete the first stef:ranzke
(1994; 1995)found ahighly significant interaction for
number of hints between number of targets(screen
objects) for possible actions on thereenand LF versus

screenobject. For example, th@ptions menu item
affords pull-down, and the Options menu item causes
menu-selection,and so on. Other knowledge about
actions, including movingand dragging the mouse
pointer, and single- and double-clicking the mouse
button, etc., was incorporated into the model.

Simulation of Training

Training on each of the scenarios for thide legendask

was simulated irseveral encodingonditions aslescribed
below. At theend oftraining, episodicmemoryincluded

nodes representingpe task instructions, the hiltor the

NLF scenario), theacted-onobjectandits label for each

step, and the displaygenerated bythe application. The
link strengths of nodes in episodicmemory are
proportional to the activation level of theswdes
obtained in the encoding cycle.

Encoding Bias

In encoding cycles, we manipulatdte relative strengths
of the links between the rest of the netwarldthe links
betweenthe networkand the taskand do-it goals. The
motivation for such manipulations is dundamental

NLF steps. There are many targets for possible actions orProperty of the action planning process. Thetion

the first step of any task. Thus, weuld expect first
steps to be especially problemati@nceusersare given

planning process wilhot work unless the link&etween
the current task, or do-it goal, and the rest ofrteevork
are much stronger than the rest of thieaks in the



network. These strong links cause a goatléminate the
integration subprocess. This subprocess selecteljeet
to be acted on and the action to be performegantstep
of the task. Manipulatingelative strengths of thénks

Table 1. Probabilities of recalling the do-it goal or the
encoding of first step for the LF and NLF scenarios. TG,
N, and DIG stand for task goal biased, neutral, and do-it
goal biased encoding condition, respectively.

between the goal and the rest of the network enables us to

explore thehypothesis that the goal majominateboth

action planning and encoding processes.

Encoding processes have been simulatedier three
conditions. In task godbiased encodingondition (TG),

we generated aetwork bymultiplying by afactor of 4

the strengths of links from the task goal. The strengths of

the links from the do-it goalere not changed. IrFigure

1, threelinks from the task goal(hide legend) are
strengthend by a factor of 4. In do-it gdwésed encoding

LF Scenario NLF Scenario
TG N TG N DIG
Probability of recalling] N/A | N/A |.027 | .253| .618
the do-it goal
Probability of recalling| .551| .736| .251 .44¢ .177
first step encoding
Total .551| .736] .278 .698 .795
Predicted Hints N/A | NJA |.722 ] .302| .205

condition (DIG), the strengths of the links from tthe-it
goal were multiplied by dactor of 4,andthose from the
task goalremained unchanged. Ithe neutralencoding
condition (N), no multiplicatiorfactorwas applied. The
NLF scenariowas simulated using the TG, DI@Gnd N

conditions. The LF scenario was simulated for the TG and

N conditions since hintarenot required andhere is no
do-it goal for the LF scenario.

Simulation of Recall

The recall cues are the task instructionand the
representation afask goalsused inthe action planning
process in trainingrial, andthe initial display for the
first step. Ineach simulation, nodes in the episodic

memory that match theepresentations of the cuegre

identified, and then the probability distribution of
retrieving therecall targetswere calculatedThe recall

targets were twencoding nodefor the LF scenario, and
the do-it goaland four encoding nodedor the NLF

scenario.

Recall after LF training
The probabilities of recalling thencoding ofthe first
step for the LF scenario for Ténd N bias conditions are

significantly increased the probability of correctly
recalling the encoding of each step.

Recall after NLF training

The probabilities of recalling thencoding forthe first
stepandthe do-it goal for theNLF scenario inthe TG,
DIG, and N bias conditions are given in Table 1. For the
NLF scenario, the row label&tbtal gives the probability

of correctly performingthe first step. LICAI+cannot
performthe first step withoutrecalling theencoding or
the do-it goal. The entriesfor Predicted Hints are,
1-Total.

Manipulation in the NLF scenario of the bias hasuge
impact on recall performance. Inthe TG biasing
condition, the probability of recalling thdo-it goal is
small. The task goadlominates thencoding process and
the do-it goal has very wealqgdirect links to thetask
goal. The task goadoeshavelinks to all four encodings
of eachstep. The probabilities ofecalling each step
encoding are alost equal,.251, .227, .180and .315,
respectively.

In the N encodingcondition, both theecall probabilities

given in Table 1. In the LF scenario, the encodings of thefor the do-itgoal andthe first stepencodingincreased

first andsecondstepsarelinked to the task goal. In the
TG condition, the probabilities of recalling tlemcoding

for each ofthe two steps wasearly equalsince the task
goal dominated the encoding process, reducing the
influence of the application displayrhus, the model

retrievedthe representation afhe first step a littlemore

than 50% of the time. In theemainder,the model

retrievedrepresentation ofhe secondstep blocking the
successful retrieval of the first step.

Correct performance ofboth steps ismediated by the
same task goahndthe encodingsarelinked strongly to
the common task goal in the TG condition. One
implication of these results is that thencoding of a
multi-step LF task will not reliably beetrieved by the
combinations of task goanddisplay cues oreachstep.
Thus, correct performancevill depend on amixture of
successful recalland the label-following strategy.
However, by lessening the biasing on the task goal in th
N encoding condition, the display cuemade amuch
stronger contribution to theencoding process and

e

compared witithe TG encodingcondition. Thereason is
the same as the LF case. The display tige®me more
effective in recallprocess.Included inthese cues is the
label for theOptions menu which isdirectly linked to
the do-it goal. Thus, the initial display is a meféective
retrieval cue for both the encoding of the first sted the
do-it goal.

On the otherhand, in the DIG condition, all links
involving the concept Option are very strong. This
enhances the effectiveness thie representation of the
Options menu as aetrieval cueand strengthens the
representation othe do-it goal inepisodic merary,
making it easier to retrieve.

COMPARISONS WITH USER PERFORMANCE
Franzke (1994)and Soto (1997) have done $udies
relevant to evaluating LICAlI+'gecall predictions. For
NLF steps, themodel predictghat users willrequire a
hint to successfully perform the step if they failrazall
the correct step encoding or hint. We used the best
available measure of recallproportion of subject



Table 2. Proportion of times at least one hint was
required for steps categorized by link type, training
(exploration) and recall trial (short or long delay). From

Table 3. Observed proportions of tasks requiring at least
one hint as a function of task type and training and delay.
From Soto (1997).

Franzke (1994).
Session 1 Session 2
Link Type Training | Short Delay) Long Delay Task Typq Training Short Delay Long Delay Short Delay
Exact Match .07 .00 14 LE/C 01 00 00 00
Synonym .08 .02 18 LF/U 19 N/A 12 N/A
Inference 42 .07 .29 PL/C 84 26 46 11
No Link .88 .05 .60 PL/U .58 N/A .29 N/A

requiring a hint on a task or steidowever,this variable
does notprovide anunambiguousneasure for evaluating
the recall predictions for LFsteps and tasks. Both
successful recalland the label-following strategy can
generate correct actions within 10 seconds.

For LF stepsandtasks, LICAI+ predictsthat no hints
should berequired during training or on recall trials.
However, Rieman (1996)and Rieman, Young, and
Howes (1996)ound that users willexplore aninterface
before taking the initial correct action predicted by the
label-following strategy. This initial exploratobyehavior
canlead tolong latenciesandhints on LF steps that are
outside the scope of LICAI+.

Description of Available Experimental Data

We first present experimentdhtafrom Franzke (1994)
and Soto (1997) focusing on the proportion dfints
required on training and recall trials.

Description of Franzke (1994)

Franzke (1994) had four groups of 20 participamtzste a
graph and then perform 9 editing tasks on the gregdhg
one of four graphics applications, Cricketaph | or llI,
or one of two versions of EXCEL. During training,
participantsdid the task by exploratiornieceiving hints
when necessary. Half the participantseschgroup were
tested forretentionafter a Sminute delay (fort delay),
and the remainder were tested after aday delay(long
delay).

Franzke classified eadtep ineachtask into one ofour
categoriesaccording tothe relationshipbetweenthe task
goal for eachstep given inherinstructionsandthe label
of the object to be acted on for that stefer exact match
and synonym categories are examples ofstéps. In her
third category annference isrequired tolink the correct
object andthe task goal. In the fourtbategory(no link)
there is no meaningful link between thereenobject and
task goal. The latter twoategoriesare both examples of
NLF steps.

The resultsrelevant to LICAI+ from Franzke’s (1994)

experimentareshown in Table 2. The table shows the

proportion of times that at least one hint weguired on
a step, with the stepsategorized bylink type, training
(exploration) and recall trial (short or long delay).

Description of Soto (1997)
Soto (1997) performed astudy replicatingand extending

series of 33 graph editing tasksing CricketGraph llI
and were tested for retention after a 2 ordaydelay. All
participantswere experienced Btintosh users who had
not used a graphing application. Editing tasks vearded
out onthreetypes of graphs: histograms, pie charts, and
bar charts. The 11 histogram editing tagkdthe first of
the 11 bar and pie chart edititgskswere used as warm-
up tasks,and thesedata arenot included inthe results
described below.

Four out of the 10 experimental meadbar chart editing
tasks were unique (U) to that graph type and occloned
during training andtesting. Anexample is“stand out a
pie slice.” Six of the tasksvere common (C) to both
graph typesand occurredwice duringtraining and recall
sessions. An example is ‘hidegend.’ The delay between
the two presentations of the common taskeraged
about 7 minutes. In Soto’'slata analysis, thesecond
occurrence of @ommon task wasreated as aecall trial
with a short delay. His participantshad no trouble
recognizing thesecond occurrencevenwith a change in
graph type.

Soto classified his editing tasksinto three categories.
Label-following (LF) tasksrequired acting on objects
whose labels were semanticatBlated tothe goal.Thus,
all steps in these tasks were equivalenFtanzke’sdirect
match and synonym step typesDirect-manipulation
(DM) tasksrequiredacting on the task object (e.g. pie
slice) mentioned inthe task goal.Thesedata are not
discussed as it is beyoride scope ofthis version of
LICAI+. Poorly-labeled (PL) tasksid not supporteither
label-following or direct-manipulation violating tHabel-
following strategy. Occasionally, a taskipported label
following as well asdirect manipulation (e.g.,Change
the graph title to “Year of Production™)or this reason,
the tasks were classified based the methodused by the
subject, rather than on a priori criteria.

Soto’s analysis is by tadlatherthan by the step level.
The typical PL task has one or two initial NLgteps.
Soto’s findingsand Franzke’s (1994)esults suggest that
the initial NLF step has the largest impact osers’
performance. Previously, w&immarized Franzkeiesult
showing thatthere is an interaction fahe number of
hints neededbetween LFversus NLFandthe number of
possible targets for action onsareen. The difficulty of

Franzke’'s results. Soto’s 19 participants were trained on a



NLF stepsincreases dramatically as fanction of the
number of targets.

Comparison With LICAI+'s Predictions

Training Performance

LICAI+ predicts perfect performance fboth training and
recall trials at all delays for LF steps. If we use the
proportion of users requiring hints as our measutarge
majority of Franzke’s (1994)esults (shown in Table 2)
andSoto’s (1997) findings (shown ifable 3) support
this prediction. The largest deviatidghat we know of is
in the datafrom LF/U, Soto’scondition where 19% of
the participants required hints on the training trial.

The model makesqually strong training performance
predictions fortasksand steps that do not support the
label-following strategy (NLF tasks). LICAl+predicts

delay. We have assumdthat LICAI+'s recall predictions
apply to delays of one or more days.

Franzke's (1994)and Soto’s (1997) results show that
immediate recall oNLF steps isquite good.Franzke
(1994) found that about 90% of NLF steps carrdmalled
after a 5 minute delay (see Table 2). About 75% of Soto’s
PL tasks were performed correctlyithout a hint,after a
short delay (See Table 3).

Recall at Long Delays for NLF Tasks and Steps

LICAI+ predictsthat successfutecall performance can
vary from .722, to .205 as a function of the encoding bias
for NLF tasksandsteps.Franzke'sand Soto’s results at
long delays arehard to interpretbecause ofthe results
from training trials for NLFtasks. Users’ learning by
exploration is better than that predicted by LICAThus,

that these tasks and steps cannot be learned by exploratigzontrary tothe predictions ofthe model, users will be

without hints or information loked up in amanual or
help systemHowever,this prediction forNLF tasks is
not sound. Theobservedproportions of tasks or steps
requiring at least onkint rangesfrom less than .5 to .9
in different conditions of the Franzke and the Soto data.

However,the pattern of deviations iboth the Franzke
andthe Sotodata isinstructive and supports the claim
that the LF-NLF distinction is a usefdksignheuristic.
LICAI+ makes incorrect predictions for learning by
exploration in NLF task®ecause ofhe model’s simple
exploration processFirst, the model cannotperform
exploratory activities like pullinglown amenu tosee if

able to discover the correct action omeaall trial even if
they fail to recall a hint or encoding of the step.

We reanalyzed both Franzke’s tink andinferencesteps
at the long delay shown in Tableakd Soto’s recall data
from his PL conditions shown iffable 3 at thelong
delay. Wemadethe assumption that the probability of
requiring hints onrecall trials, Piqire hint » 1S just the
probability of failing torecall ahint or stepencoding,
Prail_recan » times the probability of failing taliscover the
correct action by exploratiom, exploraion aSSUMIng that
the two eventsare independent. If weassume that
Prail_exploration €Stimated bythe probability of requiring

any items on that menu link to the tasks goal. hints on the training trialP,; ...y Can be estimated by

Experienced Mcintosh userscarefully explore menus
(Rieman, 1996pndact upon matching labelsncovered
during such explorations.

Second, users seem to be able to wedienination
strategies whemlealingwith a small number ofscreen
objects like the items on a menu. For exampiben
participants are given the hint to pualbwnthe Options
menu in the hide legend task, theyrrectly selecShow
Graph Items... by a process oélimination. Theother
items on this menware more specificand clearly have
nothing to do with thehide legendtask. LICAI+ can
perform this step if it is given the &wledgethat ‘show
is the opposite ohide’ andthat ‘thelegend is a graph
item.’

Pfail_recall = Prequire_hin{PfaiI_eproration

The estimated values @, (..ai for Franzke’s nolink
steps is .68, and .69 for tliferencesteps.These values
are close to thepredictedvalue for the TGcondition
shown in Table 1.

The estimated values B, ... for Soto’s poorlylabeled
tasks at a longlelay is.50 for the uniquetasks and .55

for the common tasks. These results suggest that the task
goal has a stronmnfluence on theencoding process but
that it is not as strong as the 4:1 biassumed in
computing thepredictions forthe TG conditions shown

in Table 1.

CONCLUSIONS
PRACTICE

AND IMPLICATIONS FOR

The above argumentaiggest that an interesting test of \ye haveassertedhat most userare occasional users of

the model would be to consid®&LF tasks in which the
first two steps violate the label-following stratedslide
legend’ is such a task. Rodriguez (1997) shows1ba¢o
of his subjectgequiredhints to beable to perfornthis

many applicationsandthey routinely use only a small
fraction of the functionality of theirfrequently used

applications. Amodel ofroutine cognitive skill is not a
good description of users’ actuphtterns of use. The

participantsrequiredhints for stepswhere therewas no
link between the task goal and the correct object’s label.

Recall at Short Delays for NLF Tasks

LICAI+ predicts that successfuperformance on recall
trials is possible only when userstrieve ahint or an
encoding of astep fromepisodicmemory.However, the
model does not make predictions about theeffects of

generated by anixture ofrecall of previousepisodes of
use and of problem solvingprocesseghat attempt to
reconstructmissing actionknowledge. Performance of
these tasks is more like theeconstructive processes
involved in recalling a story rather than the execution of a
rule-based representation of a routine cognitive skill.

LICAI+ is a model of occasionalusers. Thismodel
suggests the partitioning of all stepsxecuted in



performing a task into twegategoriessteps that support
the label-following strategandthose that do not. Steps
and tasks that support the label-following strategy be
performed by exploration. We know that usersave
strong preferencedor learning by exploration (Carroll,
1990; Rieman, 1996), which the label-followisyategy
supports.

Experiencedusers can makeeffective use of manuals
(Rieman, 1996) tgerform tasks thatare not supported
by the label-following strategy. However, users whidlve
continued trouble with steps notsupported by label
following (NLF steps). These steps once correctly
performedwith the assistance dfints are difficult to

remember over long delays (2 or more days). We estimate

that the probability of recall failure is at least .5.

The data from the shortdelay recall conditions also
suggests a possible limitation @&mpirical usability
tests. Test users wilhave trouble with the initial
versions of common tasks thdobn't support thelabel-
following strategy.Secondand third versions ofthese

tasks that are given to test-takers later in a session will be

performedcorrectly,and evaluators may incorrectlinfer
that there are noproblems with theinterface for these
later versions.

In summary, the theoretical and empirical results
presented inthis paperand in numerous otheistudies
demonstrateéhe wide applicability of the label-following
strategy. It supportgapid learning of all kinds of
applications, not justvalk-up-and-useapplications like
automatedeller machines. Whaveshown in thispaper
that label following is also a major contributor to the
usability of occasionally performed tasks.
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