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ABSTRACT
This paper presents a model of occasional use of
functions of an application by an experienced user of an
environment like Windows 95 or the MacOS. We have
developed a simulation model, LICAI+, that assumes that
users store episodic records of correct steps discovered by
exploration or told to them during training. They then use
the application display and their goal as retrieval cues in
attempts to recall these episodes later. The model predicts,
and supporting data show, that tasks that violate the
label-following strategy are not only hard to learn by
exploration but also difficult to remember even if the
correct steps have been previously presented.
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INTRODUCTION
Experienced users of an environment like Windows 95 or
the MacOS are occasional users of many applications
(e.g., a graphics package). Furthermore, many functions
of a frequently used application like a word processor are
only used occasionally (e.g., constructing and editing a
table). Thus, a large majority of the different tasks
undertaken by skilled users are performed infrequently
(Santhanam & Wiedenbeck, 1993).

Such patterns of occasional use should constrain the
design of usable computer systems. Ideally, such systems
should consistently support learning by exploration. At a
minimum, they should facilitate memory for action
sequences learned by demonstration or by being looked up
in a manual. The ease of recalling infrequently performed
functions can be a major determinate of usability. This is
not a novel claim. For example, the designers of the
Xerox Star had very similar insights (Bewley, Roberts,
Schroit, & Verplank, 1983; Smith, Irby, Kimball,
Verplank, & Harslem, 1982). This paper presents a
theoretical model of recall of tasks that have been done
once or a few times and data supporting the model.

LICAI+ is a model of recall of occasionally used action
sequences. LICAI+ assumes that users store episodic
records of correct steps discovered by exploration or told
to them during training. They then use the application
display and their goal as retrieval cues in attempts to later
recall these episodes. The resulting model of the recall
process is similar to models of text recall (Wolfe &
Kintsch, submitted).

LICAI+ is an extension of LICAI 1 (Kitajima & Polson,
1996; 1997) which is a model of the processes involved
in comprehending task instructions and using the
resulting goals to guide successful exploration. Both
LICAI and LICAI+ are based on Kintsch’s (1986; in
press) construction-integration theory of text
comprehension. LICAI+ adds to LICAI the processes
involved in encoding and successfully retrieving
encodings of correct actions. LICAI+ assumes that
successful performance of occasionally performed tasks
involves a mixture of recall of episodes of correct actions
and problem solving if recall fails. The model is related to
Ross’ (1984) and Rickard’s (1997) models of skill
acquisition.

Following a general description of the LICAI+ model, we
present a theoretically motivated analysis of recall of
occasionally performed action sequences. Readers
interested in a more detailed descriptions of the LICAI
model should consult (Kitajima & Polson, 1995; 1996;
1997). In support of the LICAI+ model and our
theoretical analysis we compare our simulation results
with data reported by Franzke (1994; 1995) and Soto
(1997). In conclusion, we describe design implications of
our results. We demonstrate that both ease of learning by
exploration and good recall are supported by similar
attributes of an interface.

DESCRIPTION OF LICAI+
LICAI+ simulates skilled Mac users in an experiment
where they are taught novel tasks using a new
application, Cricket Graph III. The task instructions are
very explicit but do not contain any information about
how to perform the task. Then, at some later time
ranging from several minutes to a week, they are tested
for retention of these skills when given the task
descriptions and the displays generated by the application
as retrieval cues. Users attempt to perform each task by
exploration and/or recalling an action sequence. However,
hints are given by the experimenter if users cannot
discover correct actions by themselves.

                                                
1 LICAI is an acronym of the     LI   nked model of

C     omprehension-based      A     ction planning and    I   nstruction
taking. When LICAI is pronounced [li kai], the
pronunciation represents a two-kanji Japanese word,

, meaning ‘comprehension.’



LICAI simulates comprehension of task instructions and
hints, the generation of goals, and the use of these goals
to discover correct actions by exploration. LICAI+ adds to
LICAI processes that encode successful actions and
retrieve them after a delay.

Goal Formation
LICAI’s action planning processes contain limited
capabilities to discover correct actions by exploration.
These processes are controlled by goals generated by
comprehending task instructions and hints. LICAI
assumes that goal-formation is a specialized form of the
normal reading process in which task specific strategies
generate inferences required to guide goal formation.
LICAI’s goal-formation process is derived from Kintsch’s
(1988; in press, Chapter 10) model of word problem
solving.

Kintsch’s model takes as input a low-level semantic
representation of problem text, the textbase, and processes
it sentence by sentence. The result is a problem model.
Construction of the problem model makes extensive use
of comprehension schemata which elaborate the original
text representation with problem domain specific
inferences.

LICAI incorporates comprehension schemata that
transform relevant parts of the textbase for the task
instructions and hints into goals that control the action
planning process. Propositions that describe actions on
task objects in the textbase are recognized and further
elaborated by specialized task domain schemata to
generate a more complete description of a task. For
example, consider a graphing task in which the user was
given the instruction, Plot a variable named ‘Observed’ as
a function of a variable named ‘Serial Position.’ LICAI
transforms this task description into the propositional
representations of two sentences. 1) Put ‘Observed’ on the
y-axis, and 2) Put ‘Serial Position’ on the x-axis. The
representations of the last two sentences are then
transformed into task goals that control the action
planning process. Terwilliger and Polson (1997)
demonstrated that users actually perform this
transformation.

In the studies described in this paper, experimenters gave
hints of the form ‘perform a specific action on a specified
screen object’ (e.g., pull-down the Options menu).
LICAI requires that these text or verbal descriptions of an
action on an object have to be transformed into a goal, a
do-it goal, that specifies a specific object on the screen
and/or legal actions on that object. Specialized
comprehension schemata carry this transformation. See
Kitajima and Polson (1997) for extensive descriptions of
comprehension schemata.

Action Planning
The heart of LICAI is the action planning processes.
LICAI assumes that successful action planning involves
linking propositional representations of a goal (e.g.,
create a new graph), the screen object to be acted on (e.g.,
the Graph menu), and an action to be performed on that

object (e.g., press and hold). The most critical of the three
links is the link between the goal and the correct screen
object. This link can be retrieved from memory or
generated by an exploration process.

Skilled Users
Kitajima and Polson (1995) developed a version of the
action planning process used by skilled users of an
application. This model represents an arbitrary sequence
of actions required to perform a task as hierarchical goal
structure that is retrieved from long-term memory and
used to generate the actions. A task is decomposed into a
sequence of task goals. Task goals refer to actions (e.g.,
edit) on a task object (e.g., graph title). Each task goal is
linked to an ordered sequence of one or more device goals.
Each device goal specifies a unique object on the screen
(e.g., the Options menu, the graph title) and the state of
the object (e.g., highlighted) after it has been acted on.
Thus, skilled users retrieve the critical links between goal
and screen object from memory. However, Kitajima and
Polson (1995) did not describe how such goal sequences
are learned or how they are retrieved from memory.

New Users
When a new user of an application attempts to perform a
task for the first time, Kitajima and Polson (1997)
assumed that they have a task goal but not the device
goals. LICAI can simulate exploration by generating the
correct actions for a novel task without the device goals if
the task goal can be linked to correct screen objects by
LICAI’s action planning processes.

A task goal is a proposition with two arguments
describing a task action and a task object (e.g., hide
legend). If a correct object on the screen has a label
representing either one of these concepts (e.g., a menu
labeled “hide”), the representation of the object will be
linked to the task goal. LICAI will retrieve the correct
actions (e.g., move the cursor to the object and press-and-
hold) on this object from long-term memory, completing
the necessary links to generate actions. We and numerous
other researchers have called this linking process the
label-following strategy (Franzke, 1994; Franzke, 1995;
Kitajima & Polson, 1997; Polson & Lewis, 1990;.
Rieman, Young, & Howes, 1996). Thus, the critical
links can be generated to mediate successful exploration.
The label-following strategy is the only method that
LICAI has for learning by exploration. If there is no
direct link between the task goal and the correct object,
users must be given a hint.

LICAI+’s Encoding and Recall Pr ocesses
LICAI already incorporates a model of encoding and recall
of goals based on the Kintsch and Welsch (1991) model
of text recall. They assumed that the textbase is stored in
episodic memory during the comprehension process. The
strength in episodic memory of a given element of the
textbase is determined by the number of cycles it stays in
working memory and the activation levels it achieves
during each cycle. LICAI+ generalizes this model to the
encoding and recall of successful actions. LICAI+ also
incorporates assumptions from the Wolfe and Kintsch



(submitted) model of story recall that enables us to
compute predicted recall probabilities.

Encoding Process
LICAI+ assumes that encoding and storage of a successful
action is just a special case of the comprehension process.
The model “comprehends” the results of a successful
action during training. A comprehension schema creates a
representation of the successful action which is stored in
memory during the comprehension process.

There are two forms of this encoding. The first includes
the task goal, the object acted on, and results of the action
if the label-following strategy can discover the correct
action. The second case is defined by the failure of the
label-following strategy. The experimenter gives a hint
which is transformed into a do-it goal by the instruction
comprehension processes. A do-it goal specifies an action
on a screen object (e.g., Pull-down the Options menu).
The do-it goal is included in the encoding of the
successful action in this second case.

LICAI+’s goal formation, action planning, encoding, and
retrieval processes are implemented as special cases of
Kintsch’s (1988; in press) construction-integration theory
of text comprehension. Each process is modeled by one or
more iterations of a general construction-integration
cycle.

The following is a description of the encoding and recall
cycles. See Kitajima and Polson (1997) for detailed
descriptions of the remaining processes.

The construction phase of the encoding process generates
a network of propositions that contains the following
representations:

1) the task goal,
2) the do-it goal (if a hint was given),
3) the acted-on object,
4) its label (if the acted-on object is labeled),
5) salient changes in the display state caused by the

action (e.g., menu dropped),
6) the display caused by the action (e.g., a pull-down

menu),
7) a special encoding node that links the nodes 1, 2, 3,

4, and 5 with the strengths defined by an analyst.

In addition, the fundamental linking mechanism assumed
by the construction-integration theory, the argument
overlap mechanism, is applied to connect any two
propositions in the network sharing arguments. Figure 1
illustrates a network generated for encoding a step of
pulling down the Legend menu. This action caused a
pull-down menu to appear with menu items, Hide,
Show, Move, and Arrange.

The integration phase of the encoding process is
performed using a spreading activation process. The nodes
in the network can be partitioned into sources of
activation, targets of activation, and links between
sources and targets. In the encoding process, the
representations of screen objects, the task goal, and the
do-it goal serve as sources of activation. In Figure 1,
these nodes are shaded. The encoding node is the target.

The results of the integration of the network are stored in
episodic memory.

At the end of training, episodic memory contains the
nodes representing the textbase for the task instructions
and hints, and the nodes participated in encoding processes
for the correct steps. The strengths of links between these
nodes are determined by the pattern of activation levels
achieved in respective integration processes for text
comprehension and encoding.

Recall Process
The recall process of LICAI+ assumes that users employ
the task goal and the current display representation as
retrieval cues. The recall process retrieves nodes in
episodic memory that are linked to these cues. Nodes
from episodic memory are sampled with replacement until
the model retrieves an encoding of a step or retrieves a do-
it goal (i.e., the action planning representation of a hint).

The predicted sampling distribution for retrieving nodes
from episodic memory for a given set of retrieval cues is
calculated by using a sampling probability matrix. This
matrix is a fully interconnected matrix generated from the
original episodic memory network. Following Wolfe and
Kintsch (submitted), the sampling probability matrix is
generated by two steps: 1) dividing each link strength in
the episodic memory network by the maximum link
strength, 2) for any two nodes linked by an indirect path,
assigning the product of the strength values of the link
segments in the path to their link strength.

Any nodes that are directly linked with the retrieval cues
in the sampling probability matrix are retrievable. The
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Figure 1. A diagram showing the propositional network
generated by the construction subprocess in the
encoding process. The dotted lines represent the
argument overlap links. The solid lines connecting nodes,
1 through 5, with the encoding node, 7, are special links
defining the encoding process.



probability of retrieving a retrievable node in a single
memory sampling trial is proportional to its relative link
strengths with the retrieval cues.

Sampling is with replacement, and sampling terminates
on retrieval of one of the step encodings or a do-it goal.
These assumptions enable us to calculate the recall
probability distribution for step encodings and do-it goals
(recall targets).

Action Planning After Recall
LICAI+ attempts to act using the retrieved step encoding
or the hint. If the step encoding or the hint generates the
correct action, the model successfully recalls the current
step. However, there are no explicit order cues in the
encoding of each step, so the model can retrieve steps out
of order or retrieve hints that don’t apply to the current
display. In this case, the retrieval process fails, and the
model has to explore the interface again as on the training
trial. The exploration will succeed in performing the
correct action if the label-following strategy works for
this step.

AN ANALYSIS OF RECALL OF OCCASIONALLY
PERFORMED TASKS
The basic claim of LICAI+ is that how a step in a task is
learned, by exploration or with hints, determines how that
step is encoded and retrieved. Thus, we distinguish
between label-following (LF) steps or tasks, and non-
label-following (NLF) steps or tasks where the label-
following strategy fails for lack of linking shared
concepts.

Franzke (1994; 1995) and many others have shown that
LF steps are rapidly discovered and “accurately” recalled.
However, it is hard to distinguish between rediscovery and
recall of a step after one training trial because both recall
and discovery processes can have similar latency
distributions.

Soto (1997), in an analysis of a large number of different
graphing tasks using Cricket Graph III, showed that NLF
tasks have some LF steps, usually toward the end of their
action sequences. The task ‘hide legend’ is a good
example. The first two steps (pull-down the Options
menu, and select Show Graph ItemsÉ) are NLF
steps. No menu label matches the task goal. The third
step (clear the check box labeled by Legend) is an LF
step. The last step (click OK) is a highly over-learned
action that closes a dialog box and terminates the action
sequence.

Rodriguez (1997) and Soto (1997) found that the first
NLF step in the hide legend task is the source of the
difficulties that users have with this task. Almost all
users required a hint to complete the first step. Franzke
(1994; 1995) found a highly significant interaction for
number of hints between number of targets (screen
objects) for possible actions on the screen and LF versus
NLF steps. There are many targets for possible actions on
the first step of any task. Thus, we would expect first
steps to be especially problematic. Once users are given

the hint “pull-down the Options menu” in the hide
legend task, there are only 7 menu items on that menu.

We have used two versions of the hide legend task in the
simulation described in the following sections. The first
version was a simulation of performing the hide legend
task using Cricket Graph III, Version 1.5.3 described
above. We will refer to this as the NLF scenario. The
other version of the simulated task used a hypothetical
version of Cricket Graph III that added a Legend menu
to the menu bar. The items on this menu were Show,
Hide, Move, and Arrange. This version of the hide
legend task requires two steps (select Hide from the
Legend menu) using this hypothetical interface. We will
refer to this simulation as the LF scenario. Our
discussion will focus on recall of the first step for each of
the two versions.

SIMULATION
A Mathematica program was developed implementing
processes incorporated in LICAI+ and simulating
responses from Cricket Graph III for correct actions in the
hide legend task. Training was simulated by assuming
that each step was performed correctly with hints given
for the first NLF step. The following processes are
simulated for the training: the comprehension process that
generates goals and comprehends hints, storage in
episodic memory during comprehension, retrieval of goals
from episodic memory, and action planning, encoding of
successful actions, and storage in episodic memory.

Representations of the task instructions, hints, and
interface displays were coded and input to the simulation.
The simulation also incorporated extensive knowledge
about the basic Macintosh interface conventions for each
screen object. For example, the Options menu item
affords pull-down, and the Options menu item causes
menu-selection, and so on. Other knowledge about
actions, including moving and dragging the mouse
pointer, and single- and double-clicking the mouse
button, etc., was incorporated into the model.

Simulation of Training
Training on each of the scenarios for the hide legend task
was simulated in several encoding conditions as described
below. At the end of training, episodic memory included
nodes representing the task instructions, the hint (for the
NLF scenario), the acted-on object and its label for each
step, and the display generated by the application. The
link strengths of nodes in episodic memory are
proportional to the activation level of these nodes
obtained in the encoding cycle.

Encoding Bias
In encoding cycles, we manipulated the relative strengths
of the links between the rest of the network and the links
between the network and the task and do-it goals. The
motivation for such manipulations is a fundamental
property of the action planning process. The action
planning process will not work unless the links between
the current task, or do-it goal, and the rest of the network
are much stronger than the rest of the links in the



network. These strong links cause a goal to dominate the
integration subprocess. This subprocess selects the object
to be acted on and the action to be performed on each step
of the task. Manipulating relative strengths of the links
between the goal and the rest of the network enables us to
explore the hypothesis that the goal may dominate both
action planning and encoding processes.

Encoding processes have been simulated under three
conditions. In task goal biased encoding condition (TG),
we generated a network by multiplying by a factor of 4
the strengths of links from the task goal. The strengths of
the links from the do-it goal were not changed. In Figure
1, three links from the task goal (hide legend) are
strengthend by a factor of 4. In do-it goal biased encoding
condition (DIG), the strengths of the links from the do-it
goal were multiplied by a factor of 4, and those from the
task goal remained unchanged. In the neutral encoding
condition (N), no multiplication factor was applied. The
NLF scenario was simulated using the TG, DIG, and N
conditions. The LF scenario was simulated for the TG and
N conditions since hints are not required and there is no
do-it goal for the LF scenario.

Simulation of Recall
The recall cues are the task instruction and the
representation of task goals used in the action planning
process in training trial, and the initial display for the
first step. In each simulation, nodes in the episodic
memory that match the representations of the cues were
identified, and then the probability distribution of
retrieving the recall targets were calculated. The recall
targets were two encoding nodes for the LF scenario, and
the do-it goal and four encoding nodes for the NLF
scenario.

Recall after LF training
The probabilities of recalling the encoding of the first
step for the LF scenario for TG and N bias conditions are
given in Table 1. In the LF scenario, the encodings of the
first and second steps are linked to the task goal. In the
TG condition, the probabilities of recalling the encoding
for each of the two steps was nearly equal since the task
goal dominated the encoding process, reducing the
influence of the application display. Thus, the model
retrieved the representation of the first step a little more
than 50% of the time. In the remainder, the model
retrieved representation of the second step blocking the
successful retrieval of the first step.

Correct performance of both steps is mediated by the
same task goal, and the encodings are linked strongly to
the common task goal in the TG condition. One
implication of these results is that the encoding of a
multi-step LF task will not reliably be retrieved by the
combinations of task goal and display cues on each step.
Thus, correct performance will depend on a mixture of
successful recall and the label-following strategy.
However, by lessening the biasing on the task goal in the
N encoding condition, the display cues made a much
stronger contribution to the encoding process and

significantly increased the probability of correctly
recalling the encoding of each step.

Recall after NLF training
The probabilities of recalling the encoding for the first
step and the do-it goal for the NLF scenario in the TG,
DIG, and N bias conditions are given in Table 1. For the
NLF scenario, the row labeled Total gives the probability
of correctly performing the first step. LICAI+ cannot
perform the first step without recalling the encoding or
the do-it goal. The entries for Predicted Hints are,
1–Total.

Manipulation in the NLF scenario of the bias has a huge
impact on recall performance. In the TG biasing
condition, the probability of recalling the do-it goal is
small. The task goal dominates the encoding process and
the do-it goal has very weak, indirect links to the task
goal. The task goal does have links to all four encodings
of each step. The probabilities of recalling each step
encoding are almost equal, .251, .227, .180, and .315,
respectively.

In the N encoding condition, both the recall probabilities
for the do-it goal and the first step encoding increased
compared with the TG encoding condition. The reason is
the same as the LF case. The display cues become more
effective in recall process. Included in these cues is the
label for the Options menu which is directly linked to
the do-it goal. Thus, the initial display is a more effective
retrieval cue for both the encoding of the first step and the
do-it goal.

On the other hand, in the DIG condition, all links
involving the concept Option are very strong. This
enhances the effectiveness of the representation of the
Options menu as a retrieval cue and strengthens the
representation of the do-it goal in episodic memory,
making it easier to retrieve.

COMPARISONS WITH USER PERFORMANCE
Franzke (1994) and Soto (1997) have done studies
relevant to evaluating LICAI+’s recall predictions. For
NLF steps, the model predicts that users will require a
hint to successfully perform the step if they fail to recall
the correct step encoding or hint. We used the best
available measure of recall, proportion of subject

Table 1.  Probabilities of recalling the do-it goal or the
encoding of first step for the LF and NLF scenarios. TG,
N, and DIG stand for task goal biased, neutral, and do-it
goal biased encoding condition, respectively.

LF Scenario NLF Scenario

TG N TG N DIG

Probability of recalling
the do-it goal

N/A N/A .027 .253 .618

Probability of recalling
first step encoding

.551 .736 .251 .446 .177

Total .551 .736 .278 .698 .795

Predicted Hints N/A N/A .722 .302 .205



requiring a hint on a task or step. However, this variable
does not provide an unambiguous measure for evaluating
the recall predictions for LF steps and tasks. Both
successful recall and the label-following strategy can
generate correct actions within 10 seconds.

For LF steps and tasks, LICAI+ predicts that no hints
should be required during training or on recall trials.
However, Rieman (1996) and Rieman, Young, and
Howes (1996) found that users will explore an interface
before taking the initial correct action predicted by the
label-following strategy. This initial exploratory behavior
can lead to long latencies and hints on LF steps that are
outside the scope of LICAI+.

Description of Available Experimental Data
We first present experimental data from Franzke (1994)
and Soto (1997) focusing on the proportion of hints
required on training and recall trials.

Description of Franzke (1994)
Franzke (1994) had four groups of 20 participants create a
graph and then perform 9 editing tasks on the graph using
one of four graphics applications, Cricket Graph I or III,
or one of two versions of EXCEL. During training,
participants did the task by exploration, receiving hints
when necessary. Half the participants in each group were
tested for retention after a 5 minute delay (short delay),
and the remainder were tested after a 7 day delay (long
delay).

Franzke classified each step in each task into one of four
categories according to the relationship between the task
goal for each step given in her instructions and the label
of the object to be acted on for that step. Her exact match
and synonym categories are examples of LF steps. In her
third category an inference is required to link the correct
object and the task goal. In the fourth category (no link)
there is no meaningful link between the screen object and
task goal. The latter two categories are both examples of
NLF steps.

The results relevant to LICAI+ from Franzke’s (1994)
experiment are shown in Table 2. The table shows the
proportion of times that at least one hint was required on
a step, with the steps categorized by link type, training
(exploration) and recall trial (short or long delay).

Description of Soto (1997)
Soto (1997) performed a study replicating and extending
Franzke’s results. Soto’s 19 participants were trained on a

series of 33 graph editing tasks using Cricket Graph III
and were tested for retention after a 2 or a 7 day delay. All
participants were experienced Macintosh users who had
not used a graphing application. Editing tasks were carried
out on three types of graphs: histograms, pie charts, and
bar charts. The 11 histogram editing tasks and the first of
the 11 bar and pie chart editing tasks were used as warm-
up tasks, and these data are not included in the results
described below.

Four out of the 10 experimental pie and bar chart editing
tasks were unique (U) to that graph type and occurred once
during training and testing. An example is “stand out a
pie slice.” Six of the tasks were common (C) to both
graph types and occurred twice during training and recall
sessions. An example is ‘hide legend.’ The delay between
the two presentations of the common tasks averaged
about 7 minutes. In Soto’s data analysis, the second
occurrence of a common task was treated as a recall trial
with a short delay. His participants had no trouble
recognizing the second occurrence even with a change in
graph type.

Soto classified his editing tasks into three categories.
Label-following (LF) tasks required acting on objects
whose labels were semantically related to the goal. Thus,
all steps in these tasks were equivalent to Franzke’s direct
match and synonym step types. Direct-manipulation
(DM) tasks required acting on the task object (e.g. pie
slice) mentioned in the task goal. These data are not
discussed as it is beyond the scope of this version of
LICAI+. Poorly-labeled (PL) tasks did not support either
label-following or direct-manipulation violating the label-
following strategy. Occasionally, a task supported label
following as well as direct manipulation (e.g., ‘Change
the graph title to “Year of Production”’). For this reason,
the tasks were classified based on the method used by the
subject, rather than on a priori criteria.

Soto’s analysis is by task rather than by the step level.
The typical PL task has one or two initial NLF steps.
Soto’s findings and Franzke’s (1994) results suggest that
the initial NLF step has the largest impact on users’
performance. Previously, we summarized Franzke’s result
showing that there is an interaction for the number of
hints needed between LF versus NLF and the number of
possible targets for action on a screen. The difficulty of

Table 2.  Proportion of times at least one hint was
required for steps categorized by link type, training
(exploration) and recall trial (short or long delay). From
Franzke (1994).

Link Type Training Short Delay Long Delay

Exact Match .07 .00 .14

Synonym .08 .02 .18

Inference .42 .07 .29

No Link .88 .05 .60

Table 3. Observed proportions of tasks requiring at least
one hint as a function of task type and training and delay.
From Soto (1997).

Session 1 Session 2

Task Type Training Short Delay Long Delay Short Delay

LF/C .01 .00 .00 .00

LF/U .19 N/A .12 N/A

PL/C .84 .26 .46 .11

PL/U .58 N/A .29 N/A



NLF steps increases dramatically as a function of the
number of targets.

Comparison With LICAI+’s Predictions
Training Performance
LICAI+ predicts perfect performance for both training and
recall trials at all delays for LF steps. If we use the
proportion of users requiring hints as our measure, a large
majority of Franzke’s (1994) results (shown in Table 2)
and Soto’s (1997) findings (shown in Table 3) support
this prediction. The largest deviation that we know of is
in the data from LF/U, Soto’s condition where 19% of
the participants required hints on the training trial.

The model makes equally strong training performance
predictions for tasks and steps that do not support the
label-following strategy (NLF tasks). LICAI+ predicts
that these tasks and steps cannot be learned by exploration
without hints or information looked up in a manual or
help system. However, this prediction for NLF tasks is
not sound. The observed proportions of tasks or steps
requiring at least one hint ranges from less than .5 to .9
in different conditions of the Franzke and the Soto data.

However, the pattern of deviations in both the Franzke
and the Soto data is instructive and supports the claim
that the LF-NLF distinction is a useful design heuristic.
LICAI+ makes incorrect predictions for learning by
exploration in NLF tasks because of the model’s simple
exploration process. First, the model cannot perform
exploratory activities like pulling down a menu to see if
any items on that menu link to the tasks goal.
Experienced Macintosh users carefully explore menus
(Rieman, 1996) and act upon matching labels uncovered
during such explorations.

Second, users seem to be able to use elimination
strategies when dealing with a small number of screen
objects like the items on a menu. For example, when
participants are given the hint to pull down the Options
menu in the hide legend task, they correctly select Show
Graph ItemsÉ by a process of elimination. The other
items on this menu are more specific and clearly have
nothing to do with the hide legend task. LICAI+ can
perform this step if it is given the knowledge that ‘show
is the opposite of hide’ and that ‘the legend is a graph
item.’

The above arguments suggest that an interesting test of
the model would be to consider NLF tasks in which the
first two steps violate the label-following strategy. ‘Hide
legend’ is such a task. Rodriguez (1997) shows that 100%
of his subjects required hints to be able to perform this
task. Franzke (1994) found that approximately 90% of the
participants required hints for steps where there was no
link between the task goal and the correct object’s label.

Recall at Short Delays for NLF Tasks
LICAI+ predicts that successful performance on recall
trials is possible only when users retrieve a hint or an
encoding of a step from episodic memory. However, the
model does not make predictions about the effects of

delay. We have assumed that LICAI+’s recall predictions
apply to delays of one or more days.

Franzke’s (1994) and Soto’s (1997) results show that
immediate recall of NLF steps is quite good. Franzke
(1994) found that about 90% of NLF steps can be recalled
after a 5 minute delay (see Table 2). About 75% of Soto’s
PL tasks were performed correctly, without a hint, after a
short delay (See Table 3).

Recall at Long Delays for NLF Tasks and Steps
LICAI+ predicts that successful recall performance can
vary from .722, to .205 as a function of the encoding bias
for NLF tasks and steps. Franzke’s and Soto’s results at
long delays are hard to interpret because of the results
from training trials for NLF tasks. Users’ learning by
exploration is better than that predicted by LICAI+. Thus,
contrary to the predictions of the model, users will be
able to discover the correct action on a recall trial even if
they fail to recall a hint or encoding of the step.

We reanalyzed both Franzke’s no link and inference steps
at the long delay shown in Table 2 and Soto’s recall data
from his PL conditions shown in Table 3 at the long
delay. We made the assumption that the probability of
requiring hints on recall trials, Prequire_hint , is just the
probability of failing to recall a hint or step encoding,
Pfail_recall , times the probability of failing to discover the
correct action by exploration, Pfail_exploration, assuming that
the two events are independent. If we assume that
Pfail_exploration estimated by the probability of requiring
hints on the training trial, Pfail_recall can be estimated by
Pfail_recall = Prequire_hint/Pfail_exploration.

The estimated values of Pfail_recall for Franzke’s no link
steps is .68, and .69 for the inference steps. These values
are close to the predicted value for the TG condition
shown in Table 1.

The estimated values of Pfail_recall for Soto’s poorly labeled
tasks at a long delay is .50 for the unique tasks and .55
for the common tasks. These results suggest that the task
goal has a strong influence on the encoding process but
that it is not as strong as the 4:1 bias assumed in
computing the predictions for the TG conditions shown
in Table 1.

CONCLUSIONS AND IMPLICATIONS FOR
PRACTICE
We have asserted that most users are occasional users of
many applications, and they routinely use only a small
fraction of the functionality of their frequently used
applications. A model of routine cognitive skill is not a
good description of users’ actual patterns of use. The
action sequences for occasionally performed tasks are
generated by a mixture of recall of previous episodes of
use and of problem solving processes that attempt to
reconstruct missing action knowledge. Performance of
these tasks is more like the reconstructive processes
involved in recalling a story rather than the execution of a
rule-based representation of a routine cognitive skill.

LICAI+ is a model of occasional users. This model
suggests the partitioning of all steps executed in



performing a task into two categories: steps that support
the label-following strategy and those that do not. Steps
and tasks that support the label-following strategy can be
performed by exploration. We know that users have
strong preferences for learning by exploration (Carroll,
1990; Rieman, 1996), which the label-following strategy
supports.

Experienced users can make effective use of manuals
(Rieman, 1996) to perform tasks that are not supported
by the label-following strategy. However, users will have
continued trouble with steps not supported by label
following (NLF steps). These steps once correctly
performed with the assistance of hints are difficult to
remember over long delays (2 or more days). We estimate
that the probability of recall failure is at least .5.

The data from the short delay recall conditions also
suggests a possible limitation of empirical usability
tests. Test users will have trouble with the initial
versions of common tasks that don’t support the label-
following strategy. Second and third versions of these
tasks that are given to test-takers later in a session will be
performed correctly, and evaluators may incorrectly infer
that there are no problems with the interface for these
later versions.

In summary, the theoretical and empirical results
presented in this paper and in numerous other studies
demonstrate the wide applicability of the label-following
strategy. It supports rapid learning of all kinds of
applications, not just walk-up-and-use applications like
automated teller machines. We have shown in this paper
that label following is also a major contributor to the
usability of occasionally performed tasks.
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