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Abstract

CoLiDeS is a model of how people navigate a complex website to find information and is the youngest member in a
family of models for human-computer interaction situations where users rely primarily on skilled reading and action
planning as the core cognitive processes. All models in this family are based on Kintsch’s (1998) construction-
integration (C-I) cognitive architecture. This paper describes CoLiDeS in relation to C-I, highlighting features of
CoLiDeS that distinguish it from SNIF-ACT, a competing model of website navigation based on the ACT-R
cognitive architecture combined with Information Foraging theory. Highlighting differences between CoLiDeS and
SNIF-ACT yields insights into the consequences of selecting one cognitive architecture over another, helping us
uncover the future potential for cognitive architectures in HCI. Controlled laboratory studies of the Cognitive
Walkthrough for the Web (CWW), an engineering approximation of CoLiDeS, offer strong empirical evidence for
the psychological validity and reliability of CoLiDeS and suggest a promising future for C-I in HCI.

1 Introduction

A major advantage of cognitive architectures is their comprehensiveness and versatility to cover a wide range of
human behaviors. We have developed a family of models derived from the Construction-Integration (C-I) cognitive
architecture (Kintsch, 1998) to account for various aspects of human-computer interaction (HCI), including skilled
use of applications hosted on systems with graphical user interfaces (Kitajima and Polson, 1995), performing novel
tasks by exploration (Kitajima and Polson, 1997), and browsing a website to find information relevant to a user’s
goal (Kitajima, Blackmon, and Polson, 2000). The C-I architecture was originally developed to explain skilled
reading comprehension and later extended to action planning by Mannes and Kintsch (1991).

Our papers about this family of models show how useful the C-I cognitive architecture is for modeling such
important HCI processes as comprehending task instructions, forming goals, and navigating a complex website.
Navigating a website requires comprehension of texts or text fragments (e.g., headings, hyperlinks, and content), and
scanning and reading webpages requires comprehension of visuospatial information, not just information
communicated by texts. Users must be able to understand webpage layouts analogous to the way that skilled readers
understand page layout and headline conventions of newspapers, the organizational structure that is communicated
by headings, subheadings, and sidebars of a chapter or article, and by the table of contents in a book.

In this paper we will briefly describe C-I cognitive architecture and its extension to action planning, and the family
of HCI models based on C-I. We then offer a detailed description of the CoLiDeS model of web navigation that is
based on C-I architecture, calling special attention to features of CoLiDeS that distinguish it from SNIF-ACT
(Pirolli et al., 2002; Pirolli & Fu, 2003; Pirolli, 2004), a competing model of website navigation derived from the
ACT-R cognitive architecture (Anderson & Lebiere, 1998; Anderson et al., 2004) combined with the Information
Foraging (IF) theory (Pirolli & Card, 1997). After briefly reviewing the past and present uses of C-I cognitive
architecture in HCI, we look at the future potential of C-I in HCI and whether HCI research can contribute to the
further development of C-I. We explain the reliance of CoLiDeS on Latent Semantic Analysis (LSA) for computing
semantic similarity but accentuate the distinctive way CoLiDeS uses LSA to assess whether users have adequate
background knowledge for comprehending the links and headings on a webpage. Finally, we discuss the empirical
verification of CoLiDeS, drawing on laboratory experiments we conducted to test the Cognitive Walkthrough for the
Web (CWW) (Blackmon et al., 2002, 2003, 2005), an engineering approximation of CoLiDeS..



2 Simulated Users: Description of CoLiDeS as Built on C-I Cognitive Architecture

2.1 Human-Computer Interaction Viewed as Comprehension Processes

In C-I cognitive architecture, text comprehension is a constraint-satisfaction process that utilizes a massive amount
of background knowledge stored in long-term memory in order to identify the meaning of a sentence that is
consistent with the current context. In C-I cognitive architecture, action planning uses the same constraint-
satisfaction process to select a correct action consistent with the current context and with the user’s current goal.

In HCI, performing an action entails an object to be acted on. And thus, all members of the family of related models
(Kitajima and Polson, 1995, 1997) view action planning as a two-stage process. In the first stage many objects in a
display (e.g., hypertext links, pull-down menus, text entry boxes, etc.) compete for attention as possible targets for
action, so the first stage is an attention process that ends by selecting to attend to a group of display objects that is
similar to the user’s goal. In the second stage, the user’s attention is focused on a small number of objects in the
attended-to group, but there are many possible actions on each object (e.g., type, click, double-click). The second
stage is thus an action-selection process that selects an object-action pair whose description is perceived most
similar to the user’s goal and consistent with the properties of the object (e.g., press and hold on a menu label, click
on a hypertext link, etc.)..

The C-I cognitive architecture assumes that constructing meaningful representations of texts, of objects on a display,
or of object-action pairs are all similar processes analogous to reading comprehension. A text parser generates the
textbase, i.e., a low level semantic representation of a sentence or meaningful text fragment. The textbase is
elaborated with information retrieved from long-term memory. Some of the retrieved information is irrelevant to the
current context. A spreading activation, constraint satisfaction process, retains relevant information and eliminates
irrelevant information, thereby generating a coherent representation of the meaning of the input text..

Comprehension of displays and action planning are other processes analogous to reading comprehension. A visual
parser generates a low level propositional representation of objects on a display. The attention process elaborates
propositional representations with information retrieved from long-term memory, including properties of the objects.
During the action-selection process possible actions for an object of a specific type – e.g., pull-down menus or text
entry boxes – are also retrieved from long-term memory. The constraint satisfaction process causes a model to
attend to the objects on the screen and to select the object-action pair most similar to the user’s current goal.

Kitajima and Polson (1995) developed the basic foundations for C-I models of users interacting with applications
hosted on systems with a graphical user interface (GUI) and on the World Wide Web. The paper described the
propositional representations of displays and the object-action pairs, and the two-stage action planning process
outlined in a preceding paragraph. They also developed techniques for simulating interactions with mice, windows,
menus, dialog boxes, and other kinds of widgets found in screen displays of applications. The C-I model presented
in the paper simulated a skilled user of a Macintosh application, Cricket Graph, for drawing data graphs.

LICAI (Kitajima and Polson, 1997), an acronym for LInked model of Comprehension-based Action planning and
Instruction taking, simulates a new user of an application following written instructions to perform a task.
Simulation of comprehending task instructions derived straight from Kintsch’s (1988, 1998) C-I models of word and
algebra story problems. They simulated users reading written instructions and performing novel tasks by
exploration. They also showed that LICAI accounts for the results of other experiments on performing by
exploration (Engelbeck, 1986; Polson & Lewis, 1990; Franzke, 1994, 1995), including the label-following strategy –
a form of pure forward search, one of the problem-solving heuristics most frequently used by users at all levels of
expertise. To guide search during exploration, label-following uses the overlap between users’ goals and labels on
menus, buttons, and other objects. Users act on interface objects with overlapping labels to try to discover correct
action sequences.

CoLiDeS, an acronym for Comprehension-based Linked-model of Deliberate Search, extends LICAI in order to
simulate users navigating within an informational website for a content page containing the information that the
visitor wants to retrieve. CoLiDeS, like LICAI, simulates the label-following strategy, but there is an important
difference between the displays LICAI must comprehend and those that CoLiDeS must comprehend. LICAI faces



application displays that require knowledge about WIMP interfaces, and for LICAI it is obvious to attend to the
region of the display where the next action takes place, i.e., menu bar, pulldown menu, dialog box, and so on. In
contrast, it is not obvious to CoLiDeS which region of the display should become the focus of its attention.

The webpages CoLiDeS encounters require knowledge about webpage layout, a complex mixture of conventions
from print media, hypermedia, and GUI applications. Extending C-I models of human-computer interaction to the
web involved developing a more robust, realistic model of the attention process during web navigation, because
clicking a link confronts the user with a new page containing many targets for action. CoLiDeS addressed this
challenge by adding a second pair of C-I cycles. The two pairs of construction-integration cycles go through the
attention and action-selection processes twice. The first pair of construction-integration cycles parses the webpage
into subregions and ends by selecting an attention action, i.e., the first pair of C-I cycles ends by focusing attention
on a subregion of a webpage most similar to the user’s goal. The second pair of C-I cycles ends by selecting a
possible action (e.g., clicking on a link) on an object from the attended-to subregion. More specifically, the second
round identifies targets of action within the attended-to subregion and then an action-selection process selects and
acts on a specific widget (e.g., a link) from the attended-to subregion. This second pair of construction-integration is
identical to object selection and object-action pair selection in our previous models of HCI.

2.2 Current Working Version of CoLiDeS

In this section we depict a CoLiDeS simulation in relation to the concrete example illustrated in Figure 1. We first
explain the goal formation mechanisms of CoLiDeS. Then we provide more detailed information about the two pairs
of C-I cycles that provide the robust model of attention processes in web navigation. Then we describe the complex
way that CoLiDeS computes information scent and level of background knowledge, clarifying how CoLiDeS draws
on multiple sources to compute activation values. Finally, we outline the learning mechanisms of CoLiDeS. As we
will show, attention to subregions and background knowledge level are crucial for differentiating CoLiDeS from the
version of SNIF-ACT as described by Pirolli and Fu (2003).

2.2.1 Goal Formation

CoLiDeS creates two types of subgoals, navigation subgoals for how to find a webpage, and content subgoals for
acquiring target information. Suppose, for example, that a visitor wanted to know about type 2 diabetes and started
searching at WebMD, a medical website. CoLiDeS assumes that the visitor creates a goal consisting of a navigation
subgoal and a content subgoal. For the CoLiDeS simulation in Figure 1, the goal contains both a content subgoal and
a navigation subgoal: “I want to learn about type 2 diabetes because I am having the common symptoms of diabetes;
increased thirst, frequent urination, and increased hunger (content subgoal). I will search the information by using
the site navigation bar (navigation subgoal).” Either or both subgoals can be active at any given moment in time.

2.2.2 Attention Phase: First Pair of Construction-Integration Cycles

During the attention phase the user parses the webpage into subregions. Given a webpage, CoLiDeS assigns an
identity at the layout level to each element on the page by applying knowledge about conventions to render a
webpage. At the core is knowledge of print conventions necessary to comprehend print media, including the
knowledge for identifying headings, content text, photos, their captions, advertisements, and so on. Experience with
webpages adds knowledge of application and Internet conventions, including the knowledge for identifying site
logo, navigation bar, text links, and traditional GUI components, such as search windows, navigation tabs,
navigation control buttons, and so on. These pieces of knowledge are activated both through visuospatial bottom-up
processes and knowledge-driven top-down processes. Identities of the webpage elements are determined on the basis
of the degree of consistency of the recognized features with those specified in the knowledge.

Figure 1 shows an example representation that CoLiDeS would create for the “Diseases, Conditions and Health
Topics” page of WebMD Health. Assuming that background knowledge is adequate to comprehend the subregion
headings, CoLiDeS selects the subregion whose description is most similar to the description of the user’s goal. The
goal consists of both a navigation subgoal and a content subgoal, and thus, when the page layout conforms to the
user’s expectation, a subregion consistent with the description of the navigation subgoal would be selected. Figure 1
shows that CoLiDeS selected the site navigation bar as the end result of the attention phase.



Figure 1: CoLiDeS simulation of a visitor searching WebMD (http://my.webmd.com) for information on type 2
diabetes and selecting the action to click the link “Diseases & Conditions”



2.2.3 Action Selection Phase: Second Pair of Construction-Integration Cycles

CoLiDeS elaborates the elements in the selected subregion by retrieving relevant knowledge from long-term
memory. This elaboration process is a random memory sampling process cued by the representation of each object
in the selected subregion. The probability of the cue retrieving an element from long-term memory is proportional to
the degree of their mutual relatedness. An object is associated semantically with other concepts and functionally
with interface conventions. For example, the text-link object “Diseases & Conditions” is semantically associated
with such concepts as Illness, Diabetes, or Complaint, and functionally associated with Afford to single-click, Open
a new page, Change color when selected, etc. The elaboration is a non-intelligent process that activates as much
knowledge as possible within a given time span. Semantic elaboration is performed by referring to a semantic space
that the simulated users would have and selecting terms close to the concept of the elaborated object. Functional
elaboration is simulated by assuming a plausible set of knowledge typical users with GUI applications would have.

During object selection a few screen objects are selected as the candidates for next action. In Figure 1, Diseases &
Conditions, Medical Library, and Health Tools, all under the heading Medical Info would be selected as the
candidates for the next action. Object-action selection occurs next after object-selection. CoLiDeS retrieves
representations of actions associated with the application from long-term memory and combines them with the
selected objects to create executable actions. In the case of web browser, the actions associated with text links
include Point and Click. Point is the prerequisite for Click but it might also cause ALT text to appear. Click is to
open the linked page. The representation of the Click action is consistent with the user content goal, and thus the
action Point at Diseases & Conditions is selected and then Click at Diseases & Conditions is selected.

2.2.4 How CoLiDeS Calculates Information Scent and Assesses Background Knowledge

The key notion in this section is that CoLiDeS integrates information from multiple sources to generate activation
values, the equivalent of information scent in the C-I cognitive architecture. Information scent is a key concept for
explaining users’ navigation behaviors on the Web (e.g., Blackmon et al., 2002, 2003, 2005; Chi et al., 2001, 2003;
Furnas, 1997; Pirolli, 2004; Pirolli & Card, 1999; Pirolli & Fu, 2003). The metaphor evokes the image of a user
searching for information by following a trail, repeatedly pursuing whatever object currently provides the highest
degree of scent. Information scent is proportional to the activation level of the screen object (e.g., link), and the
operational definition of scent-following in CoLiDeS is selecting the screen object with the highest activation level.

In C-I propositional networks, representations of subgoals, representations of the screen, and pieces of knowledge
retrieved from long-term memory are represented as nodes with some strength level and must be interconnected
with weighted links. In CoLiDeS, five independent factors combine to determine the composite information scent
between the user’s goal and the screen object (i.e., heading or link text). CoLiDeS uses LSA measures as
engineering approximations for the first three of these five independent factors (see below, Section 3 on LSA):

• The degree of semantic similarity between the user’s goal and the heading/link text (LSA cosine)
• Whether there is an adequate level of relevant background knowledge for successfully elaborating the

heading or link (minimum LSA term vector length in the selected semantic space estimates the amount of
associated knowledge in the semantic space, e.g., amount of knowledge about diseases and conditions)

• Whether a word used in the heading or link text is a low-frequency term in the user’s background
knowledge (minimum LSA word frequency in the selected semantic space, a parameter that is especially
crucial for very low frequency terms and zero-frequency terms typically ignored by LSA and by people)

• The frequency with which the user has encountered the screen object/widget or specific heading/link
(screen elements on frequently navigated paths are more likely to be selected, e.g., a frequent user of
websites with site navigation tab menus would have a propensity to navigate a website using the site tab
menu, and, analogously, a person who had often used site search engines would be more apt to focus on
the search window than someone who had previously located information primarily by browsing)

• Whether there is a literal matching, partial or complete, between the user’s target goal and a screen object
(e.g., looking for information about Type 2 Diabetes and seeing a link labeled “Type 2 Diabetes”).

A full running simulation of CoLiDeS will integrate all the above five factors into a single activation value, i.e., a
measure of the probability that the user will select a particular link or other screen object. After integration, the
resultant pattern indicates in what degree each of the elaborated objects is related to the elaborated goal. Information
scent is often defined narrowly as just semantic similarity, but here five factors combine to form information scent.



2.2.5 Learning Mechanism of CoLiDeS

CoLiDeS can learn in the same way as LICAI+ (Kitajima, Soto, & Polson, 1998), an extension of LICAI and a
model of recall of occasionally used action sequences. CoLiDeS and LICAI store in memory episodes of successful
instruction-following or correct step-discovery, recalling these episodes on ensuing occasions of encountering the
same task to be performed on the same initial screen state. This process is analogous to recalling successfully solved
word problem episodes when meeting the same problem again, and the resulting model of recall processes resembles
models of text recall (Wolfe & Kintsch, 1998). LICAI+ adds to LICAI the processes involved in encoding and
successfully retrieving encodings of correct actions. LICAI+ assumes that successful performance of occasionally
performed tasks involves a mixture of recall of episodes of correct actions, and problem solving if recall fails. The
model is related to Ross’ (1984) and Rickard’s (1997) models of skill acquisition. Kitajima et al. (1998) showed that
LICAI+ predicts – and that data confirm LICAI+ predictions – that tasks that violate the label-following strategy are
hard to learn by exploration and hard to remember, even if the correct steps have been previously presented.

2.3 Future of CoLiDeS and C-I Cognitive Architecture

The most serious problem we face is lack of a community of C-I modelers and an infrastructure to support
researchers or practitioners who want to build HCI models in the C-I cognitive architecture. There are presently only
limited models and tools and no full-fledged model development support comparable to the support for building
cognitive models in ACT-R and Soar. LSA is a useful method for approximating the propositional networks of C-I,
but the LSA community also offers limited support (http://lsa.colorado.edu). Does that mean that ACT-R or Soar
will ultimately absorb C-I to incorporate current advantages of C-I theory of reading comprehension?

CoLiDeS has not yet been developed into a full, running simulation model, but some of our previous C-I models of
HCI were full running simulation models (Kitajima & Polson, 1995, 1997). Creating a running simulation of
CoLiDeS is high on our agenda and can be accomplished by adding mechanisms from LICAI, LICAI+, and
LICAI/BT (briefly described in Kitajima & Polson, 2002). LICAI can use reading to understand task instructions.
LICAI and LICAI+ can generate and select user goals. LICAI+ can learn action sequences from successful episodes,
storing them as a cluster of propositions about a goal, elements of the context, and results of action. LICAI/BT can
backtrack when a selection set (e.g., items on a pulldown menu) does not contain any objects similar enough to the
current goal. LICAI originally used propositional representations, like C-I originally did, but Kintsch (1998) later
began substituting LSA as an engineering approximation for propositional representations in C-I. CoLiDeS also uses
LSA, and we could retrofit older members of our C-I family of models (LICAI, LICAI+, LICAI/BT) with LSA.

A cognitive architecture needs knowledge about how to use the interface and must be able to communicate with the
interface. Embodied models (e.g., ACT-R/PM and ACT-R 5.0) can serve as simulated users. They must be able to
interact with a representation of the same display that is presented to users/subjects and to interpret those displays
and act on them in the same way that users/subjects do. Anderson (2002) explains that ACT-R traditionally focused
on higher-level processes that could be broken down to the level of unit tasks that execute in about 10 seconds, but
the newer features in the perceptual-motor interface extend ACT-R to deal with processes on a different level of
magnitude – 50-millisecond slices. In contrast, C-I consistently started with the textbase and bypassed developing a
theory of the low-level processes skilled readers use for visual recognition of letters and words. A single C-I cycle
for sentence comprehension takes at least one second and usually a minimum of 2-3 seconds.

Thus, at present C-I cannot deal with the perceptual processes included in embodied models. C-I acknowledges that
the skilled reader had to deal with orthography to get the textbase, but C-I starts with the textbase. Analogously,
CoLiDeS acknowledges that visuospatial recognition ability is a mixture of top-down and bottom-up processes, but
CoLiDeS starts with a webpage layout and text that is the equivalent of the textbase in C-I. CoLiDeS needs
information about such conventional webpage widgets as the site search engine, site logo, and the representation of
site information architecture in the left-hand navigation column. Our models (Kitajima & Polson, 1995, 1997)
worked out interactions with pull-down menus, dialog boxes, etc., and all of this can generalize to any other screen
display. Action planning mechanisms are powerful enough to interact with all the widgets on a webpage, and
clicking links on a webpage is trivial by comparison with actions done in a Macintosh application. The roadblock is
the lack of a formal theory of how users parse the webpage – lack of a well-developed way to represent a webpage
that is equivalent to the way that Kitajima & Polson (1995) represented elements of Macintosh interface. Current



CoLiDeS research is filling the gap by investigating how webpage layouts direct attention. This research will extend
the original definition of CoLiDeS (Kitajima, Blackmon, & Polson, 2000) in an important way by modeling the
parsing process within the C-I architecture. Ultimately we must build a webpage parser that automatically parses the
webpage the way human beings parse the webpage, representing a webpage layout in terms that CoLiDeS can use,
including subregions, headings and subheadings, and links nested under the headings. There is some hope of doing
this because the Web source code is open code (in contrast, most interfaces are closed systems), and so is the code
for the browser and the rendering engine that produces the actual webpage layout.

Because it is difficult to master a complex cognitive architecture like C-I, and the cognitive models based on it (e.g.,
LICAI, CoLiDeS), our emphasis to date has been on developing CWW, an engineering approximation of the
CoLiDeS cognitive model. CWW is simpler than CoLiDeS, usable by designers/practitioners, useful to them, and
highly automated. We have created CWW tutorials that employ concrete examples and will continue to update these
tutorials, make them available for download from our AutoCWW server, and add online help to server webpages.

3 Using LSA to Simulate Background Knowledge of Users

C-I architectures assume that perceptions of semantic similarity are dependent on successful text comprehension,
that comprehension is dependent on having the necessary background knowledge, and that comprehension processes
can fail due to inadequate background knowledge. We have consistently found strong evidence that inadequate
background knowledge of a topic seriously impairs web navigation and contributes to high rates of task failure.
Thus, we use the LSA cosine as a measure of semantic similarity, but it is only one of the LSA measures that we
use. Furthermore, although LSA (Landauer & Dumais, 1997) is a very important component of CoLiDeS and
CWW, CoLiDeS and CWW employ LSA under the guidance of the C-I cognitive architecture and its theory of
comprehension processes. The guidance of C-I cognitive architecture has six crucial implications:

1. Because background knowledge is essential for comprehension, CoLiDeS starts by selecting an LSA
semantic space that accurately represents the background knowledge of a particular user group in one
language and culture (in two languages/cultures, if the user group is bilingual/bicultural).

2. Inadequate background knowledge impedes comprehension, and one feature of CoLiDeS that distinguishes
it from SNIF-ACT is that CWW identifies topics and terms that will be unfamiliar to the user and given
little or no attention. For example, the link Psychology has an adequate term vector length (0.97) for
college-level general reading knowledge but drops to an unfamiliar level of 0.18 for the 9th-grade
semantic space. Whenever a link text is unfamiliar, CWW and CoLiDeS assume that users are unlikely to
select the link, even if LSA finds a strong semantic similarity between the user goal and the link.

3. Novel or low frequency words (words that occur infrequently in the corpus used to construct a semantic
space) impair comprehension of link labels and webpage content. People probably ignore words and
single-word link labels they have never seen (zero-frequency word). Analogously, LSA ignores words
that have a zero frequency in the corpus, although this can precipitate the need to translate for LSA any
recently coined word that real people know but LSA does not. Because people have only a vague sense
of the meaning for words with very low frequencies, CoLiDeS flags words that have a frequency of 15 or
less as words whose meaning must be inferred partially or completely from the surrounding context.

4. During comprehension a reader elaborates the text in relation to his or her background knowledge.
Accordingly, CoLiDeS and CWW elaborate the raw text of each link in the selected semantic space by
adding to the raw link text all the terms that have a minimum cosine of 0.50 with the raw text and a
minimum word frequency of 50. For example, elaborating the raw link “Psychology” adds the terms
“psychology psychologists psychologist sociology behavior anthropology psychological.” Elaborated
link labels generally produce more accurate estimates of semantic similarity (LSA cosine values).

5. Readers scan headings and subheadings to grasp the top-level organization or general structure of the text.
While scanning, a webpage user can also locate a subregion that is above some threshold of similarity to
the user’s current goal, ignoring subregions that are not sufficiently familiar. To build a representation of
each subregion, CoLiDeS and CWW first elaborates the raw heading text (like it elaborates each raw link
text) and then it groups together the elaborated raw heading text and all the elaborated link texts for the
links that are nested in the subregion. The LSA vector for the whole unit is an approximation of human
understanding of the subregion and its heading, such as Geography or Social Science.

6. Different semantic spaces, representing different levels of education and/or different cultural backgrounds,
produce different LSA cosine values as well as different LSA term vector lengths and word frequencies.



CoLiDeS differs from SNIF-ACT in its ability to accurately represent the background knowledge of a diversity of
user groups by constructing and selecting an appropriate LSA semantic space. Thus, another future direction for
CoLiDeS (see Section 2.3) will be to expand the variety of LSA semantic spaces and to update current LSA
semantic spaces to reflect new knowledge acquired in recent years. In a rapidly changing world where information is
increasingly accessed via the Internet, people are endlessly learning by exploration and seeking just-in-time
information to accomplish their goals. Background knowledge differs widely among people from different cultural
backgrounds, education levels, and areas of expertise, but these diverse groups are all using the same websites and
the same Internet. CoLiDeS focuses on the conditions necessary to support pure forward search and to identify and
repair impediments to pure forward search, so CoLiDeS must accurately predict how successfully diverse users can
navigate websites to accomplish particular goals. The accumulated evidence about diverse users can, in turn,
contribute to further developing the C-I cognitive architecture, expanding the range of evidence to a far broader
sample of human beings. In addition, if personas (Cooper, 1999) prove highly useful to HCI designers, an
appropriate semantic space could be attached to each persona – linking semantic spaces with concrete images of
particular users who might use any particular website. During ethnography for developing a persona, the usability
expert could collect texts representing what a persona has read and use them to create a specialized semantic space.

4 Engineering Approximation of CoLiDeS for Website Usability Evaluation

CWW (Blackmon et al., 2002, 2003, 2005) is a simplified version of CoLiDeS, an engineering approximation
designed to be a pragmatic website usability evaluation method. Usability analysts must find and repair usability
problems rapidly, and CWW must be designed so that analysts can rapidly learn to use CWW accurately. CWW
must be highly automated and must substitute objective measures for subjective human judgments, particularly in
cases where the human users have very different background knowledge than the usability analysts.

• CWW now has automated algorithms to identify usability problems. CWW simulates the two pairs of C-I
cycles, first parsing the webpage and selecting a subregion to attend to, and then selecting a link from the
attended-to subregion. CWW identifies a competing heading problem if attention is strongly drawn to an
incorrect subregion(s) rather than a correct one that contains a link that leads to accomplishing the goal.

• CWW now accurately predicts the mean total clicks to accomplish a particular goal on a webpage and can,
thus, predict task difficulty and determine what tasks have problems serious enough to warrant repair.

• CWW suggests repairs that allow users to find items by clicking the links they are most apt to click. Users
vary in the links clicked to reach the goal, so to create successful repairs CWW must encompass enough
high-probability links to make it possible for almost all users to reach the goal within two or three clicks.

• The CWW prediction formula is most accurate for the most serious problems, and the success rate for
repairs is best for the most serious problems. Thus CWW enables usability experts to target the most
serious problems for repair, the problems that are most worth the time and effort required to repair them.

5 Summary of Experiments Testing CWW Predictions

We have conducted experiments that demonstrate the psychological validity and reliability of CWW problem
identification, the accuracy of the CWW measure of problem severity, and the high success rate of CWW-guided
repairs of problems (Blackmon et al., 2002, 2003, 2005). In these studies we used predicted mean total clicks as the
measure of problem severity, but in the present context it is more useful to focus on factors that foster pure forward
search. Two groups of experimental participants alternated between tasks that CWW predicted to be non-problems
and tasks that CWW predicted to be serious problems, completing a total of 64 tasks searching for an article on a
simulated online encyclopedia. Both groups, one with 53 experimental participants, the other with 60, were
composed of undergraduates who completed the tasks for partial course credit. The main webpage for each of the 64
tasks displayed 93 links nested under nine headings, and only one of the 93 links was a correct link that led to the
target article, the same link that leads to the article in the online encyclopedia being simulated in the experiment.

Table 1: Minimum-path solvers and observed clicks for non-problem and problem tasks

Task Type Number
of Tasks

Mean percentage of minimum-
path solvers. (standard deviation)

Mean observed total clicks
(standard deviation)

Non-problem 34 59.54%. (20.39) 2.2 (0.89)
Problem 30 17.38%. (18.98) 5.6 (1.91)



Table 1 shows the results. For each task we computed the percentage of participants who completed the task in the
minimum number of clicks: a mean percentage of 60% minimum-path solvers for the 34 tasks that CWW predicted
would be non-problem tasks compared to a mean percentage of only 17% minimum-path solvers for the 30 tasks
that CWW predicted would pose serious problems. The difference was statistically significant, F (1, 62) = 72.7, p
<.0001. Table 1 also shows the mean observed total clicks for the same tasks and subjects: 2.2 clicks for non-
problem tasks vs. 5.6 clicks for problem tasks, a statistically significant difference, F (1, 62) = 89.3, p <.0001. Thus,
virtually everyone finds non-problem tasks in 1-3 clicks, approaching an asymptote of pure forward search. Multiple
regression analyses for this dataset and for a larger set of 164 tasks (Blackmon et al., 2005) demonstrated three
factors responsible for explaining variance in task difficulty (indexed by mean observed total clicks): presence of an
unfamiliar correct link, presence of a weak-scent correct link, and number of competing links nested under
competing headings. These are precisely the factors tracked by CoLiDeS. Research on CWW (especially Blackmon
et al., 2005) offers solid empirical verification for CoLiDeS based on controlled experiments, collectively offering a
consistent pattern of evidence from hundreds of tasks, each task completed by a large sample of subjects that ensures
a stable mean for each task.

6 Conclusions

Due its C-I foundation, CoLiDeS has unique features that enable it to model reading comprehension, the core
cognitive process underlying webpage navigation, and to accurately predict usability problems that impair
navigation. Both CoLiDeS and SNIF-ACT deal with information scent, but only CoLiDeS manipulates the effects of
background knowledge and identifies problems due to inadequate background knowledge – unfamiliar topics and
low frequency words. We have repeatedly demonstrated (Blackmon et al., 2002, 2003, 2005) that inadequate
background knowledge (unfamiliar problems) impedes pure forward search and cause serious problems for users.
Inadequate background knowledge impairs successful navigation even for users with college-level general reading
knowledge, but gaps in background knowledge expand for users with less adequate background knowledge, e.g.,
readers represented by the 6th-grade semantic space instead of the college-level space. CoLiDeS can simulate
qualitative as well as quantitative differences among semantic spaces, e.g., differences in cultural backgrounds.

Another key feature of CoLiDeS is its two pairs of C-I cycles that first parse the webpage and select a subregion as
the focus of attention. In terms of Information Foraging theory, CoLiDeS selects one patch within the webpage and
ignores the rest. If the correct link is in the attended-to patch, as occurs in non-problem tasks, the selective attention
fosters pure forward search and efficiently curtails wasting effort on attending to unpromising information patches.
As we have shown (Blackmon et al., 2002, 2003, 2005), when subregions (information patches) within a webpage
have high scent for a user goal but fail to contain a link leading to the goal, they act as competing headings and tend
to cause high rates of task failure. SNIF-ACT currently processes the links on a webpage sequentially, so it has no
mechanism for detecting situations where users are drawn to the wrong information patch within the webpage.

To ensure a promising future of C-I architecture in HCI, the bottom line is empirical verification. Though CoLiDeS
is not yet a full running simulation like SNIF-ACT is, CoLiDeS has already compiled a large amount of empirical
evidence to demonstrate its psychological validity and reliability. CoLiDeS and other models based on C-I have thus
carved a promising niche in HCI. At this juncture, nothing would teach us more about the consequences of cognitive
architectures than head-to-head testing of a model derived from one cognitive architecture compared to a competing
model derived from another cognitive architecture, e.g., SNIF-ACT from ACT-R compared to CoLiDeS from C-I..
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