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ABSTRACT
This paper1  describes a computational model of skilled use
of an application with a graphical user interface2.  The
model provides a principled explanation of action slips,
errors made by experienced users.  The model is based on
Hutchins, Holland, and Norman’s (1986) analysis of direct
manipulation and is implemented using Kintsch and
Mannes’s (1991) construction-integration theory of action
planning.  The model attends to a limited number of objects
on the screen and then selects action on one of them, such
as moving mouse cursor, clicking mouse button, typing
letters, and so on, by integrating information from various
sources.  These sources include the display, task goals,
expected display states, and knowledge about the interface
and the application domain.  The model simulates a graph
drawing task.  In addition, we describe how the model
makes errors even when it is provided with the knowledge
sufficient to generate correct actions.

1.  INTRODUCTION
The goal of this paper is to present a computationally-
based, performance model of skilled use of applications
with graphical user interfaces like those of the Apple
Macintosh and Microsoft Windows that accounts for both
correct performance and errors made by expert users.  Our
model is synthetic in that it attempts to integrate the views
of numerous researchers on the nature of graphically-based
human-computer interaction (Smith, Irby, Kimball,
Verplank, and Harslem, 1982; Shneiderman, 1982;
Hutchins, Hollan, and Norman, 1986), theoretical ideas
about the nature of display-based problem-solving (Larkin
and Simon, 1987; Larkin, 1989; Howes, 1993), action

                                                                        

1  This paper is a revised version of Kitajima and Polson (1994),
published from the Institute of Cognitive Science, University of
Colorado, ICS Technical Report #94-02.  This paper will appear
in the International Journal of Human-Computer Studies.

2  A preliminary version of this model was described in Kitajima
and Polson (1992), a paper presented at CHI’92.

planning (Mannes and Kintsch, 1991), and task and device
representations (Payne, Squibb, and Howes, 1990).

Our results make two important contributions.  First, the
model provides a well-motivated explanation of the fact
that skilled users make surprising numbers of errors (Card,
Moran, and Newell, 1983; Norman, 1981; Reason, 1990;
Hanson, Kraut, and Farber, 1984).  Second, the model
incorporates representations of large displays in which
there is irrelevant information that the model must ignore in
order to successfully complete a task.  Thus,  the model
incorporates processes that focus on task-relevant
information presented on the display and stored in long-
term memory. This paper summarizes the results from a
large simulation experiment that validates the sufficiency
of the model for a realistically complex task and shows that
it explains why skilled users make errors.

1.1  How Does A Graphical User Interface Facilitate
Performance?
Over the years, developers and designers (Smith et al.,
1982; Bewley, Roberts, Schroit, and Verplank, 1983) have
provided explicit rationale for graphical user interfaces.
Shneiderman (1982) defined the concept of direct
manipulation and argued that it is a critical property of
successful graphical user interfaces.  Hutchins, et al.
(1986) developed a qualitative psychological model of
interaction with a graphical user interface and provided a
more detailed analysis of Shneiderman’s concept of direct
manipulation.

The key idea from Hutchins, et al. (1986) is that interaction
with a system involves a cyclic process that has two major
components:  evaluation of the consequences of an action
and planning an appropriate next action.  The complexity of
these evaluation and planning activities determines the
difficulty of learning and performing a task.
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Figure 1. The graph to be produced by the  user during the Cricket Graph Task.

1.2  Display-Based Problem-Solving
Larkin and Simon (1987)  argued that displays facilitate
problem-solving by allowing users to substitute perceptual
operations for effortful symbolic operations, and that
displays can reduce the amount of time spent searching for
critical information.  Larkin (1989) extended this analysis
to tasks with characteristics similar to tasks performed
using a computer.  The first task she analyzed involved
preparing fresh ground beans and assembling a coffee
maker to brew coffee.  The second task was manipulation
of complex algebraic expressions to solve linear equations.

Classical models (Newell and Simon, 1972; Card, et al.,
1983) assume that such tasks involve the generation or
retrieval of hierarchical goal structures.  This goal structure
is an “isomorph” of the task structure that is generated and
held in working memory or represented in a set of complex
plans that have been acquired and stored in long-term
memory.  Larkin (1989) argued that our subjective
experience in actually performing one of these tasks is not
consistent with the process that would be required to
generate these complex goal structures.

She identified the following six features of display-based
problem solving for skilled users:  1) the process is easy, 2)
it is largely error-free, 3) it is not degraded by interruption,
4) the steps are performed in a variety of orders, 5) the
process is easily modified, and 6) performing the task
smoothly and easily requires learning.  She showed that
rules that correctly interpreted representations of

intermediate states of the problem presented on a display
enable a user to generate the information contained in a
complex goal structure.  The user can  read off a properly
designed display information necessary to correctly select a
next action.  Howes (1993) defines such models as
examples of recognition-based problem-solving
architectures.

Numerous other authors with various theoretical
motivations (e.g., Suchman, 1987; Mayes, Draper,
McGregor, and Oatley, 1988; Payne, 1991) have rejected
about goal structures on the grounds that it is often difficult
if not impossible to find any direct evidence for their
existence.  Larkin’s arguments suggest that a well-designed
graphical interface eliminates the need for the generation
and maintenance of complex goal structures or the learning
and storage of detailed action plans.

In the last several years, numerous researchers have
developed models of display-based action planning
(Chapman, 1987) and human-computer interaction (John
and Vera, 1992; Peck and John, 1992;  Howes and Young,
1991; Howes and Payne, 1990;  Payne, 1991).  They differ
widely in the details of how they are implemented in an
underlying cognitive architecture, e.g., SOAR (John and
Vera, 1992; Peck and John, 1992;  Howes and Young,
1991).  However, they all are consistent with Larkin’s
(1989) argument that the control structure for a complex
task can be read off a well designed display.
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Figure 2. This is the state of the display just after the user has pointed at “Graph” menu item.

Figure 3. The critical intermediate state of the first subtask in the Cricket Graph Task.  User
must select “Serial Position” from the left scrolling window, “Observed” from the
right, and then click “New Plot.”
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1.3  Errors in Human-Computer Interaction
A puzzling and frequently ignored fact in human-computer
interaction literature is that experts have surprisingly high
error rates, up to 20%.  The literature on errors has
concluded that there are two qualitatively different types of
errors (Norman, 1981; Reason, 1990).  The first is errors of
commission, or mistakes.  Such errors are committed by
users who are carrying out novel tasks and fail to
immediately discover the correct action sequence.  The
other is slips, where expert users have the correct intention
but fail to successfully execute the correct action sequence.

The following is a summary of representative studies of
errors made by skilled users in human-computer
interaction.  Card, et al. (1983) studied individual skilled
users performing two tasks, manuscript editing and
electronic circuit design editing.  The manuscript editing
experiment involved a detailed evaluation of  a single
expert user doing 70 edits presented in marked up
manuscript.  Errors were made on 37% of the command
sequences describing edits.  Over half of the errors were
detected and corrected during generation of the editing
commands.  Twenty-one percent (15 out of 70) of the
commands issued  by this very skilled user generated the
wrong result and  required additional edits to correct these
errors.  In a second study of a single expert carrying out an
electronic circuit design editing task, the user had an error
rate of 14% on 106 edits.

Hanson, Kraut, and Farber (1987) studied 16 researchers
and managers who were intermediate and expert level users
of UNIX performing document preparation tasks and e-
mail.  They logged over 10,000 commands.  The overall
error rate was 10% with error rates ranging from 3% to
50% on different commands.

The experiments briefly reviewed here are representative of
results from a wide range of studies in the human-computer
interaction literature.  Error rates for expert users range
from 5 to 20%.  In all studies of experts, users eventually
produced the correct results.  Most of these errors are
action slips.  Approximately 50% of the errors are detected
during the generation of a command and corrected.
Detection and correction of errors is an integral part of
expert skill.

1.4  An Example Graphical User Interface and An
Example Task
The task used in our simulation experiment involved
preparing a graph that matches an example using  Cricket
Graph 1.33.  Here, we briefly describe the task and
summarize the subjects’ representation of the action
sequence necessary to accomplish it.  Our simulation of this
task is described in detail in Section 3.

                                                                        

3  Copyright Cricket Software, 1986-89, Valley Stream Parkway,
Malverin, PA.  Out of date version.  The current version is
published by  Computer Associates.

We assume that the user is a skilled user of Cricket Graph
and that he or she has been given the data to be plotted in a
Cricket Graph document entitled “Example Data.”  The
user’s task is to plot the data and edit the resulting default
graph to match the example given in Figure 1.  Double-
clicking “Example Data” causes the program to display a
spreadsheet with three columns labeled “Observed,”
“Predicted,” and “Serial Position.”  Figure 2 shows the
display after the user has moved the mouse cursor to the
menu item Graph.  The user’s task is to plot “Observed”
as a function of “Serial Position” and then edit the resulting
default graph so that it conforms to a model provided by
the experimenter.

The user’s first subtask, creating the default graph
“Observed” plotted as a function of “Serial Position,”
involves selecting “Line-Graph” from the “Graph” pull-
down menu which brings up a dialog box.  The dialog box,
shown in Figure 3, enables the user to designate the column
labeled “Serial Position” as the X-axis and the column
“Observed” as the Y-axis.  Clicking a button labeled “New
Plot” causes the default graph to be presented.

The second major component of the task involves a
sequence of editing operations that change X- and Y-axis
ranges, the font and size of X- and Y-axis, legends, title,
and the like.  These editing operations enable the user to
transform the default graph into a graph that matches the
appearance of the model.

Cricket Graph and similar programs like DeltaGraph Pro
combine the functions of several different application
program including spreadsheets (e.g., EXCEL) and draw
programs (e.g., McDRAW).  Successful use of an
application like Cricket Graph requires the skills necessary
to operate a significant fraction of the functionality of the
Macintosh interface like creating and editing text and basic
operations on spreadsheet data as well as specific
knowledge about the program’s interface and the task
domain of statistical graphs.  Thus, the results of our
theoretical analyses should be generalizable to other tasks
and application programs.

2.  OUTLINE OF THE MODEL - A COMPLETE ACTION
CYCLE
2.1  Overview of the Model
Our theory elaborates Hutchins et al. (1986) analysis of
direct manipulation and Norman’s (1986, 1988) action
theory framework shown in Figure 4.  The four basic
components are:  (1) goals representing what the user wants
to accomplish which are a schematic outline of the
sequence of subtasks that will accomplish the task, (2) a
task environment which is the world that reacts to the
user’s actions and generates new responses by modifying
the display, (3) the stage of evaluation comprised of the
processes that evaluate and interpret the display, and (4) the
stage of execution comprised of the processes that select
and execute actions that affect the world.  Our model
assumes two processes for the stage of evaluation and two
for the stage of execution.



Kitajima and Polson  Display-Based Human-Computer Interaction

– 5 – ICS-TR-94-02

THE WORLD

ACTION CYCLE

STAGE OF EVALUATIONSTAGE OF EXECUTION

TASK GOALS

DEVICE GOALS

GENERATION OF 
DISPLAY REPRESENTATION

ELABORATION OF 
DISPLAY REPRESENTATION

SELECTION OF 
CANDIDATE OBJECTS

SELECTION OF 
COGNITIVE ACTION

Figure 4. Overview of Norman’s action cycle, defined by four components; goals, the stage of
evaluation, the stage of execution, and the world.

We assume that the last action has led to a major change in
the state of the display.  In this case, the complete action
cycle involves all four subprocesses shown in Figure 4.  In
the following sections, we briefly describe each subprocess
in Figure 4.

2.2  Task Goals and Device Goals
The model assumes that skilled users have a schematic
representation of the task and action sequence necessary to
complete the task that is in the form of a hierarchical
structure involving two kinds of goals:  task goals and
device goals.  Our  goal representation is taken directly
from the Yoked State Space Hypothesis proposed by
Payne, et al. (1990).  Payne, et al. assume that discovering
how to carry out a task involves searching of two problem
spaces.  The first is a space of possible task states.  The
second is a space of possible device states that are required
to achieve a given task state.  We assume that each task
goal is associated with one or more device goals.  The
device goals specify device states that must be achieved in
order to satisfy an associated task goal.

For the Cricket Graph Task,  a skilled user’s initial goal is
to produce the default graph with “Observed” plotted as a
function of “Serial Position.”  A key device goal is the
appearance of the dialog box that enables them to select the
columns of the spreadsheet that will be plotted on the X-
and Y-axis, respectively (Figure 3).  Complete list of the
task goals and device goals for the Cricket Graph Task is
presented in Table 2 in Section 4.2.

Our model simulates a skilled user who has complete and
correct knowledge of the goal structure of the Cricket
Graph Task.  The model is capable of simulating errors
even though we assume that the user has the correct task
and device goals for each step.

2.3  Stage of Evaluation
There are two processes involved in the evaluation stage.
(See the right portion of Figure 2.)  The first involves
generation of the display representation.  The second
involves evaluation of information presented on the display
via an elaboration process.  The following sections describe
these processes.

2.3.1  Generation of the Display Representation
The model assumes that the visual image of the screen is
parsed into a collection of objects, each represented by
several propositions.  The parsing process is not
implemented in the model.  The representation of each
object on the display includes a limited amount of
appearance information and no information about
relationships to other objects on the display or the function
of an object.

For each object shown in the screen snapshot in Figure 2,
the model creates an arbitrary identifier and then describes
the object in terms of a limited number of appearance
attributes. The representation of the menu item, Graph,
for example, only includes such information as not
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currently being pointed at, being displayed in normal video,
identifying it as a graph menu item, and so on.  More
details about the display representation are in Section
3.2.1.1.

2.3.2  Elaboration of the Display Representation
A key idea in the Hutchins, et al. (1986) analysis of
graphical user interface is the gulf of evaluation, the
difficulty of evaluating the display that results from the last
action.  Recall that this model’s display representation
contains no information about the meanings of the objects
on the screen, the interrelationships between display
objects,  or relationships between the task and display
objects.  Such knowledge is critical in providing links
between the current goals, objects on the screen, and the
action to be performed.  Building these links simulates
evaluation of the display.  The gulf of evaluation in our
model is measured by the number of links that must be
incorporated into the display representation in order to
successfully select the correct action.

Building the links that bridge the gulf of evaluation is done
by a memory sampling process  that retrieves the necessary
information from long-term memory using the
representations of goals and the display as retrieval cues.
The  retrieved information elaborates the display
representat ion, providing information about
interrelationships between display objects, relationships
between the task and display objects, and other attributes of
display objects.  The elaboration process simulates
evaluation of the display that results from the last action in
the context of the current task and device goals.

The evaluation process can fail even when an expert user
has in long-term memory all of the information sufficient to
correctly evaluate the display.  This process is described in
Section 3.3.1.2.  The elaboration process is probabilistic.
As a result, information may be omitted that is necessary to
properly evaluate the display.  An incompletely elaborated
display representation can cause the model to make an
incorrect action.

The Graph menu item in the initial display shown in
Figure 2 can be elaborated by retrieving such knowledge as
that the Graph menu item can be pulled down and that the
Graph menu item has Line-Graph on its pull down
menu.  The memory sampling  process can fail to retrieve
either or both of these links from long-term memory.   If
one or both are missing, the model cannot pull down the
Graph menu.  The model would select another action, for
example, pulling down File menu item.

2.4 Stage of Execution
The other key idea in Hutchins, et al. (1986) is the gulf of
execution, the difficulty of formulating and executing the
action or action sequence specified by the newly revised
goals.  In the model described in this paper, the stage of
execution which bridges this gulf involves the two
processes, selection of candidate objects and choice of one

action-object pair.  The selected action is performed on one
object, the result of the action changes the display and/or
the state of the system.  These processes are shown in the
left portion of Figure 2.  The model represents actions at
small grain size like move the mouse cursor, single click,
grab and hold, and the like.  Thus, in this model, the gulf of
execution is small and fixed.

2.4.1  Selection of Candidate Objects
This process involves selection of three of candidate
objects from the large number of display objects in the
representation of the current screen.  The model considers
information from the goals, the display representation, and
the knowledge retrieved from long-term memory in the
process of selecting the three objects.  This process is
described in more detail in Section 3.3.2.3.

2.4.2  Selection of An Action-Object Pair
The action selection process generates all possible actions
that could be carried out on the three candidate objects.  It
then combines information from the goals, the display
representation, and the knowledge retrieved from long-term
memory to select one action-object pair and updates the
display representation with the consequences of the action.
There are a large number of possible actions.  The
definition of an action combines a physical action (pointing
at an object, click and double-click on pointed-at object,
drag, and the like) with different versions of each of the
physical action defined by different system states and
intentions of the user.  For example, moving the mouse
cursor in order to edit a text object or moving the mouse
cursor to pull down a menu are represented in the model as
different actions.   This process is described in more detail
in Section 3.3.2.4.

In the display shown in Figure 2, the object selection
process selects three menu items, Graph, File, and
Data, as the candidate objects for the next action.  The
action selection process begins by generating a
representation of the 149 possible combinations of the
action-intentions and the three menu items.  One of these
possibilities is moving the mouse cursor to Graph with
the intention of pulling down the menu.

3.  DETAILED DESCRIPTION OF THE MODEL
The model described in Section 2 has been simulated by a
computer program based on Mannes and Kintsch’s (1991)
model of action planning derived from Kintsch’s (1988)
construction-integration theory of text comprehension.
This section gives a brief review of the theory in the
context of human-computer interaction.

3.1 The Construction-Integration Theory of Text
Comprehension
Kintsch (1988) proposed a model of text comprehension
that combines elements of both symbolic and connectionist
models of cognitive processes.  Kintsch’s theory views text
comprehension as a cyclic process where a reader processes
a sentence or the major constituent of a longer sentence
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during a single construction-integration cycle;
comprehension of a text involves a sequence of such
cycles.  On each cycle, the model takes as input a
representation of the reader’s goals, key elements of the
text comprehended so far, and a p r o p o s i t i o n a l
representation of the next sentence or major sentence
fragment.  The model outputs a representation of this latest
sentence or fragment consistent with the reader’s goals and
the context provided by the previous text.

3.1.1  Text Comprehension Process
The construction-integration cycle is a two-phase process.
In the first phase, a network of propositions is created
containing possible alternative meanings of the current
sentence or fragment.  The construction process generates
an associative network whose nodes are propositions
representing the input text, the meanings of words in the
input text retrieved from long-term memory, the current
context,  and the reader’s goals.  Construction is a bottom-
up process that is not guided by context.  Thus, in
elaborating the meanings of concepts contained in the
representation of the current sentence, the construction
process may create inconsistent representations.

The integration process, the second phase, is used to
compute an interpretation of the input sentence consistent
with the current context and the reader’s goals.  The
integration process is connectionist in nature and uses a
spreading activation mechanism.  The most highly
activated nodes in the network represent an interpretation
of the input sentence that is consistent with the reader’s
goals and the current context.

3.1.2  Extensions to Human-Computer Interaction
Mannes and Kintsch (1991) extended the construction-
integration theory to action planning.  Their experimental
task domain was human-computer interaction.  Mannes and
Kintsch’s (1991) model took as input a representation of
the user’s or planner’s goals, the text containing the task
description, and a very schematic representation of the task
context.  They argued that text comprehension and action
planning can be conceived of as similar tasks.  Readers and
planners must integrate their goals and information from
other diverse sources to select one out of many alternative
interpretations of a text or one out of many competing plans
for action.  Mannes and Kintsch (1991) also noted that
many human-computer interaction tasks and other action
planning tasks are initiated by a request to a user or planner
that is in the form of text.  A natural extension of a model
of text comprehension to action planning is to show that it
demonstrates its understanding by executing actions
necessary to comply with a request contained in a text.

Kitajima and Polson (1992, 1994) and this paper develop a
model of display-based human-computer interaction based
on Mannes and Kintsch’s (1991) construction-integration
model of action planning.  Section 5 contains a more
detailed comparison of this model with other action
planning models based on the construction-integration

theory (Doane, Mannes, Kintsch, & Polson, 1992a; Doane,
Mcnamara,  Kintsch, Polson,  & Clawson, 1992b).

3.2 The Network Representation
Our model and Mannes and Kintsch (1991) represent the
knowledge required to generate a correct action sequence
including goals, the display, information stored in long-
term memory, candidate objects, and actions as
propositions.  These model borrow and extend the
representational machinery that have been developed for
theories of text comprehension (Kintsch, 1974, 1988;
Bovair and Kieras, 1985; Anderson, 1983).  Such models
represent meaning by interconnecting a collection of
propositions into a network.  In other works, these model
are configural (patterns of interconnections) theories of
meaning.

The model described in this paper builds two such
networks during the stage of execution.  The first is
constructed from a collection of propositions representing
the task and device goals, the display, the knowledge
retrieved from long-term memory by the memory sampling
process, and the candidate objects.  This network is used in
the process of selecting three candidate objects.  The
second network is constructed from  the propositions
representing the task and device goals, the display, the
knowledge retrieved from long-term memory by the
memory sampling process, and representations of all
possible action-object combinations for the three candidate
objects.

In the following sections, we describe the details of how
the goals, display, and information retrieved from long-
term memory are represented as propositions.  We then
show how the two networks are constructed and how the
three candidate objects and an action-object pair are
selected.  We also present the details of the memory
sampling process.

3.2.1  Display, Goals, Information in Long-Term
Memory, and Candidate Objects
The display, task and device goals, information in long-
term memory, and candidate objects are represented as
propositions.  We have adapted Bovair and Kieras’s (1985)
version of propositional notation for our purposes.

A proposition is a tuple of the form,

(predicate argument 1 argument 2 …
argument n).

For example, the text version of one proposition from the
display representation,

OBJECT23 is_a_kind_of  DISPLAY-OBJECT

is formally represented as,

(is_a_kind_of  OBJECT23 D ISPLAY-OBJECT)



Kitajima and Polson  Display-Based Human-Computer Interaction

– 8 – ICS-TR-94-02

The predicate of a proposition is in lower case letters
connected by underscore characters (e.g.,
is_a_kind_of )  and arguments, in small caps letters
(e.g., OBJECT23) .

3.2.1.1  Representations of Display
The display is represented as a collection of display objects.
Each display object is represented by six propositions in the
current implementation.  Recall that the representation of
each display object contains a limited amount of
information about the appearance of the object, and no
information about semantics, legal actions, or relationships
between objects.

Consider the menu items shown in Figure 2.  Each item is a
display object, and is represented by propositions
identifying it and defining its display status.  For example,
Graph in the menu bar is represented with three
propositions for its identification:

OBJECT23 is_on_screen, (P 1)

OBJECT23 is_a_kind_of  DISPLAY-OBJECT, (P 2)

OBJECT23 is_a_kind_of  GRAPH-MENU-I TEM. (P 3)

and three proposition for its display status:

OBJECT23 is_pointed_at, (P 4)

OBJECT23 is_not_highlighted, (P 5)

OBJECT23 is_not_grabbed. (P 6)

OBJECT23  is an arbitrary internal identifier unique for the
specific display object, Graph.

P1  states that the object exists and is on the screen.  P2
classifies the object as a display object.  DISPLAY-OBJECT
represents a class of display objects that allow for certain
kinds of actions.  P3  is a type-token relationship
identifying the object.  GRAPH-MENU-I TEM represents a
type that subsumes any display object that is displayed in a
menu with the name of “Graph.”  Propositions P4  to P6
define the status of the display object.

Note that our model uses a very simplified representation
of display objects.  There is no information about color
(except for highlighting) shape, size, location, adjacent
objects, containment, or textural features like the text in an
icon label, font, size, and so on.  The limited amount of
perceptual information in the current model is not a
constraint imposed by the basic representational formalism
but is a decision made by us.

3.2.1.2  Representations of Goals
The model assumes that expert users have schematic
representations of task goals in long-term memory.  A task
goal is the representation of a user’s intentions to perform
actions on objects (Kieras, 1988).  For example, the task
goal for the Cricket Graph Task is represented as follows:

(TaskGoal  NEWPLOT LINE-GRAPH GRAPH OBSERVED-
DATA SERIAL-P OSITION)

The above task goal can be paraphrased as “Plot a new line
graph with observed data plotted as a function of serial
position.”

A device goal is the representation of the consequences of
an action or sequence of actions in terms of the appearance
of one or more objects on the display.  The model assumes
that expert users have representations of device goals in
long-term memory, and can associate a task goal with one
or a number of device goals.  One of the device goals
associated with the above task goal, for example, is an
encoding of the display shown in Figure 3.  The device goal
is an abstract description of the display.

Retrieval of task and device goals from long-term memory
was not simulated.  The model was given the correct goals
for each step of the correct action sequence.

3.2.1.3   Representations of Knowledge in Long-Term
Memory
Propositions representing the contents of long-term
memory contain additional information about display
objects.  This information is used to elaborate the display
representation.   Propositions describing the contents of
long-term memory for the Cricket Graph Task were coded
based on an analysis of graph drawing tasks and the manual
for the basic operations on Macintosh.  Propositions
represent part-whole relationships, attributes of objects, and
possible functions invoked by different actions on an
object.

The following examples show how the objects are
represented in the model:

Part-whole relationships
When an object has a component, it is propositionalized by
using the  has   predicate:

MENU-B AR has  GRAPH-MENU-I TEM

Attributes
When an object is subordinate to a higher concept, or has a
certain kind of attribute, is associated with another object,
or with an application name, they are propositionalized as
follows, respectively:

DISPLAY-OBJECT includes  GRAPH-MENU-I TEM,

OBJECT23 is_not_a_kind_of  TEXT,

OBJECT23 is_associated_with  OBJECT24,

GRAPH-T ITLE is_associated_with
APPLICATION21,

where APPLICATION21 represents  EDIT .
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Possible functions invoked by different actions on an object
The following is the representation of the fact that the
action grab on Graph will show its pull-down menu.

OBJECT23 when_it_is_grabbed  FUNCTION11,
where FUNCTION11 represents SHOW-P ULL-DOWN-MENU.

Possible elaborations
We already have the display representations for OBJECT23,
the Graph menu item, that appears in Figure 2 as P1
through P6.  The following demonstrates how knowledge
of that display object can be elaborated through retrieval
from long-term memory.  The propositions P1 through P6
are elaborated around the three arguments, OBJECT23,
DISPLAY-OBJECT, and GRAPH-MENU-I TEM.   

OBJECT23 can be elaborated as follows:

OBJECT23 when_it_is_grabbed  FUNCTION11,

OBJECT23 is_associated_with  GRAPHS,

OBJECT23 is_not_a_kind_of  TEXT,

OBJECT23 is_associated_with  SCATTER-GRAPH-
MENU-I TEM,

OBJECT23 is_associated_with
LINE-GRAPH-MENU-I TEM, (P 7)

MENU-B AR has  OBJECT23.

Similarly, DISPLAY-OBJECT and GRAPH-MENU-I TEM can
be elaborated as follows:

DISPLAY-OBJECT includes  I CON-L ABEL,

DISPLAY-OBJECT includes  EDIT -MENU-I TEM,

DISPLAY-OBJECT includes  GRAPH-MENU-I TEM,

DISPLAY-OBJECT includes  COLUMN-GRAPH,

DISPLAY-OBJECT includes  TEXT-GRAPH,

MENU-B AR has  GRAPH-MENU-I TEM,

DISPLAY-OBJECT includes  GRAPH-MENU-I TEM.

The rest of propositions in the display representation are
elaborated in exactly the same way as above.  The resulting
representation, the elaborated display representation,
defines the whole set of information that is associated with
the current particular display state.

3.2.1.4  Representations of Candidate Objects
The model constructs representations of candidate objects
by first searching for tokens representing display objects in
the elaborated display representation and then generating
corresponding propositions that state that the display object
is a candidate for action.  In Figure 2, for example, there
are ten objects that represent the menu bar.  In addition,
there are objects defined by elements of the window, icons,

and the like.  The model generates as many propositions
representing candidate objects as the number of display
objects represented in the display representation.

3.2.2  Representation of Actions
The model’s action representation is taken from Kintsch
and Mannes (1991) and combines processes from Kintsch’s
(1988) construction-integration theory with mechanisms
from rule-based models of skill (Anderson, 1993).  The
representation of a specific action-object pair is generated
by combining information about the object to be acted on,
the function of the action, the physical constraints that must
be satisfied for the action to take place, the physical action
involved, and the consequences of the action.

Recall that actions are defined at a small constant grain size
that is defined by the characteristics of the physical actions
involved.  In the current model, physical actions simulated
are Move Mouse Cursor , Single Click , Double
Click , Press and Hold Mouse Button Down ,
Release Mouse Button , and Type .

The complete specification of an action on an object is
generated by combining a given physical action-object pair
with the description of the different functions of that action
on the object.  For example, the action, Press and
Hold Mouse Button Down , can be combined with the
function of showing pull-down menu, or with the function
of dragging the selected object.  Move Mouse Cursor
can be combined with the function of changing the cursor
shape to the arrow, or to the I-beam.  Single Click  can
be combined with the function of changing the object state
to the selected or to the deselected.

The conditions necessary for a physical_action-object-
function combination to be executed are defined by states
of the object, such as whether or not it is pointed-at,
whether or not it is text, whether or not it is highlighted,
whether or not it is grabbed, etc., and by a proposition
stating that the object has the function.  The consequences
of the execution of the physical_action-object-function
combination are defined by states of display objects.  Such
combinations of physical_action-object-function generate
six representations for Move Mouse Cursor , three for
Single Click , two for Double Click , three for
Press and Hold Mouse Button Down , two for
Release , and two for Type , a total of 18.

A variablized version of each action representation is
bound to each of the three candidate objects.  This process
occurs without any consideration of whether the resulting
action-object representation can be executed in the current
context.  An action-object pair can be executed if the
current display satisfies the conditions for its execution.
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Table 1.  Summary of relationships between model’s processes and representations.

PROCESSES

Representations elaboration candidate object
selection

action-object pair
selection

task and device goals,
and display

used as retrieval cues incorporated in the
network / used as source
of activation

incorporated in the
network / used as source
of activation

long-term memory retrieved by a
probabilistic memory
sampling process

retrieved propositions
are incorporated in the
network

retrieved propositions
are incorporated in the
network

candidate objects not used incorporated in the
network / most highly
activated nodes
represent candidates
objects for next action

not used

action-object pairs not used not used incorporated in the
network by using the
selected candidate
objects / most activated
eligible node represents
the next action

The action-object representation has three components.
The first is a proposition whose first argument is the
associated physical action followed by several arguments
that enumerate major features of the action-object
representation in terms of the display object to be acted on
and its functions.  The second component is a set of
conditions, like the conditions of a rule-base representation
(Anderson, 1993),  tested to determine executability of the
action in the context defined by the display representation
and information retrieved from long-term memory.  The
third component is a set of propositions that are added to
the network when the action is executed representing the
consequences of action.

The following is an example of an action-object
representation for pointing at Graph menu.

Name: Point-at Graph In Menu-Bar with ARROW-
Shaped Cursor

Condition: IF
Graph is on Screen
Graph is not Grabbed
Not Pointing at Graph
POINTER-SHAPE is ARROW
POINTER-SHAPE is NOT I-BEAM
Graph is NOT TEXT Object

Action:
Pointing at Graph
Graph is on Screen
Graph is not Grabbed
POINTER-SHAPE is ARROW
POINTER-SHAPE is NOT I-BEAM

3.2.3  Summary
Table 1 illustrates the relationships between various
representations and the processes.  In the second column,
we have the elaboration process where the representations
of the goals, the display and long-term memory are
relevant.

3.3  The Complete Action Cycle
This section summarizes how the action cycle model is
implemented using the construction-integration theory as
outlined in Figure 4.  The stage of evaluation involves two
processes:  generation of the display representation and
elaboration of the display representation via the memory
sampling process.  These processes take place only if the
last action lead to a major change in the state of the display
like the appearance of a dialog box, pull-down menu, or
highlighting of a selected item in a list.  These processes do
not occur after the movement of the mouse pointer.  The
stage of execution involves two processes: selection of
three candidate objects and selection and execution of one
action-object pair.

The typical action sequence required to perform the Cricket
Graph Task simulated in our experiment can be segmented
into pairs of actions.  The first is a mouse cursor
movement.  The second is an action that leads to a major
display change.  The all of the processes in the evaluation
and execution stages are executed when selecting a target
of a mouse cursor movement.  The model simulates
evaluation of the last major display change caused by the
second action of the previous pair and simulates execution
of the movement of the mouse cursor to a new object.  The
change of the location of the mouse cursor only involves
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updating the display representation of the location of the
pointer.  The model then simulates selection and execution
of an action on the newly pointed at object.

3.3.1  Stage of Evaluation
3.3.1.1  Build the Display Representation
The processes involved in constructing the display
representation are not simulated in the model.  The lists of
propositions describing the screen after each major display
change were constructed by hand and stored in a file along
with the associated task and device goals.  The content of
this representation is described in Section 3.2.1.1.  The list
of propositions describing each screen was read by the
program  after each action that lead to a major display
change.  Thus, the model always had the correct task and
device goals, and the simulation behaved as if the simulated
user had always made the correct action leading to a
display change.

3.3.1.2  Memory Sampling Process
Elaboration of the display that results from a major change
is simulated by a memory sampling processes taken from
Kintsch’s (1988) construction-integration model.  Kintsch
used the Raaijmaker and Shiffrin (1981) model of memory
retrieval to simulate the process of retrieving information
from long-term memory for incorporation into the network.
Kintsch assumed that the propositional  representation of a
sentence momentarily activates the meanings of words and
other related information in long-term memory.  This
knowledge is incorporated in the network during the
construction phase.  Kintsch and Mross (1985) present
evidence in favor of these assumptions.

Recall that the representation of each display object
contains no information about the function of an object,
legal actions on a object, or relationships between objects.
This information is stored in long-term memory in the form
of propositions.  The content and format of this information
is described in Section 3.2.1.3.  This information is used to
elaborate the display representation.

The collection of proposition representing the goals,
display, and content of long-term memory can be thought
of as a collection of linked items.  The links are defined by
shared arguments in pairs of propositions.  For example, all
of the proposition described in Sections 3.2.1.1 to 3.2.1.3
describing OBJECT23 , the Graph menu item, contain the
argument OBJECT23 which links them together.

Each argument in each proposition that represents a goal or
display object can serve as a retrieval cue for propositions
in long-term memory.  The retrieval process model was
first described by Raaijmaker and Shiffrin (1981).  Each
argument is used as a retrieval cue Nsample  times, the

elaboration parameter. The probability that proposition Pi

will retrieve proposition Pj , P Pj | Pi( ) , is given by the

following formula:

P Pj | Pi( ) =
WPi ,Pj

WPi ,Pk
k ≠ i
∑

 (F-1),

where WPi ,Pj
≥ 0.0  is the strength between proposition

nodes Pi  and Pj .  We describe how the strengths are

computed in Section 3.3.2.5.

3.3.2  Stage of Execution
In simulation of the stage of execution, the program  selects
three candidate objects and then selects and executes an
action-object pair.  Each of these selection processes
involves two phases: construction of a network of
propositions and then use of an iterative, spreading
activation process to make the selection.  This section
describes the network construction process, the integration
process, selection of candidate objects, selection and
execution of an action-object pair, and the parameters that
specify the strengths of the links in the network.

3.3.2.1  The Network Construction Process
The simulation builds two networks during the stage of
execution: one for candidate object selection and the other
for action-object selection.  The networks are represented
by a square matrix where the rows and columns are
propositions.  The first is defined by the task and device
goals, the display representation, the knowledge retrieved
from long-term memory, and the representations of all
candidate objects.  The second is defined by the task and
device goals, the display representation, the knowledge
retrieved from long-term memory, and the representations
of all actions on the three, selected candidate objects.  If
two propositions share one or more arguments, they are
linked.  The strength of link is determined by the
parameters of the model described in Section 3.3.2.5 and
summarized in Figure 5.   These same link strengths are
used to calculate retrieval probabilities, Eq. F-1, for the
elaboration process.  If there is no overlap between
arguments of two propositions, there is no link, the strength
is 0.0.

3.3.2.2  The Network Integration Process
The model selects the three candidate objects and the
action-object pair to be executed using the integration
process.  On each iteration of the integration process, a
vector of activation values is premultiplied by a matrix
representation of the network.  In the first iteration, the
vector is set as follows:  the elements for task and device
goals, and display, which are sources of activation, are set
to 1.0, and the elements for propositions retrieved from
long-term memory, and candidate objects or
representations of action-object pairs, are set to 0.0.  The
vector is renormalized after each iteration;  the elements for
sources of activation are reset to their initial values, 1.0,
and the others are normalized so that their sum becomes a
constant value.  The iterative integration process stops
when changes in the values of activation vector become
below a threshold value.
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Mathematical details of the construction process and the
integration process are described in Appendix A.

3.3.2.3  Selection of Candidate Objects
The model first builds a network that links and assigns
weights between propositions representing the task goal,
the device goal, the elaborated display representation, and
the propositions representing candidate objects.  Then, the
network is integrated.  The model selects three candidate
object representations with the largest activation values.

3.3.2.4  Selection and Execution of an Action-Object
Pair
The model first constructs representations of  action-object
pairs for each of the three candidate objects.   The
representations of all action-object pairs are then linked in a
network made up of propositions representing the task goal,
the device goal, the elaborated display representation
through the propositions that make up the first component
of the action representation.

The representation of each action-object combination
includes a set of conditions, the second component of the
action representation, and consequences of performing the

action on the object, the third component.  The simulation
puts additional links among the representations of action-
object pairs that reflect causal relation between conditions
and consequences.  If a condition of an action-object
combination, Li , is satisfied by execution of Lj , then Li

supports Lj . If a condition of Li  is disabled by the

execution of Lk , then Li  inhibits Lk .  Supports is
represented in the network by a link with positive weight;
inhibits is represented by a link with negative weight.

For example, let Li  be the pointing action, “single click
within a word to locate the insertion point.”  Li  supports
any pointing action which results in an I-beam cursor;  it
inhibits any action that yields an arrow shaped cursor.
These causal links are asymmetric.

The simulation also uses inhibitory links to prevent
repeated execution of an action-object pair.  The program
examines for each action whether all consequences are
found in the nodes representing the elaborated display
representation.  If they are found, the action is inhibited by
all nodes that match the representation of consequences.
These links are asymmetric.

task-
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device-goal display retrieved
LTM
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objects

action-object pairs

task-goal

(1)

Fgoal
2
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action-object
pairs

Wactions−excitation
Wactions− inhibition

(4), (–4)

Figure 5. A matrix representation of the network.

The network is then integrated and the most highly
activated and eligible action-object pair is selected as the

next action.  The condition of an action-object pair is
considered to be satisfied when all propositions in it’s
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condition are found in the elaborated display
representation.

3.3.2.5  Model Parameters
The links and their weights are established by the program
during the network construction process.  Different types of
links have different strength defined by the following
parameters:

Woverlap : argument overlap weight,

Wassoc : free association weight,
Wactions−excitation : support weight,
Wactions− inhibition : inhibit weight, and
Fgoal ; goal magnification factor.

The number of shared arguments, argument overlap ,
determines the strength of a link between a pair of
propositions.  It is assumed that, when two nodes share one
argument, they are connected by a link of strength Woverlap .
When they share N  arguments, the strength is multiplied
by N.  This link is symmetric.

For example, a display representation, P1,

Object23  IS _ON_SCREEN,
and a representation in long-term memory,  P7,

Object23  IS _ASSOCIATED_WITH Line-Graph-
Menu-Item,

are connected by the shared argument, OBJECT23.

When an argument in a proposition representing a task
goal, a device goal, or display object is successfully used as
a retrieval cue for a proposition in long-term memory, the
strength of the link(s) between the proposition containing
the cue and the retrieved proposition is increased by the
value of the free association weight, Wasssoc .  For example,
when P1  retrieves P7 , the strength of the link between
them becomes Woverlap + Wassoc .  This link is symmetric.

The links between condition and consequences of action-
object pairs take a value depending on whether or not the
consequences of one pair support or inhibit another pair.
The strengths of support and inhibit links are parameterized
by Wactions−excitation  and Wactions− inhibition , respectively.
These links are asymmetric.

Links between arguments in propositions representing task
and device goal and other propositions in the network have
a special status.  The strengths of these links are multiplied
by the goal magnification factor, Fgoal , which is greater

than or equal to 1.  These special links have strong effects
on the elaboration process,  object selection, and action-
object selection described more detail in 4.3.2.  These links
are symmetric.

Figure 5 shows a matrix representation of the network
which is segmented into its constituents.  Each cell
describes relevant parameters for connecting two portions
of the network.  In order to illustrate rough shape of the
matrix, a set of typical link strengths used in the simulation
is also shown in the figure.  The values in parentheses are
link strengths for the case where there is one shared
argument between two propositions, and where the link
strength has been incremented by Wasssoc  if one proposition
is a retrieval cue for the other.

4.  A SIMULATION EXPERIMENT
We have explored the behavior of the model in a series of
simulation experiments.  The initial studies, described in
Kitajima and Polson (1994), were designed to understand
how the model reacts to manipulations of its parameters.
These studies are only summarized here.  This section
focuses on the results of a very large simulation experiment
that was conducted in order to understand how and why the
model makes errors. We adapted a program, NETWORK
(Mannes and Roushey, 1990) to carry out our simulations.

4.1  The Initial Series of Simulation Experiments
The most startling result of our initial series of simulation
experiments was that the  model can fail to select correct
actions even when it is provided with correct goals and all
other information sufficient to generate the correct action
sequence. We will show that the  model does not guess
when it makes an error,  but it selects the most reasonable
action based on incomplete information.  Finally, we will
demonstrate the model’s ability to  recover from errors.

The initial series of simulation experiments were reported
in detail in Kitajima and Polson (1994).  The initial goal of
these studies was to find a collection of parameter values
for the model that would  enable us to simulate skilled
performance on a realistically complex task like the Cricket
Graph Task.  We assumed that skilled performance
involved rapid generation of the correct action sequence.
We found a set of parameters that caused the integration
process to converge rapidly when generating the correct
action sequence.

A major result of these experiments was that the links
between task and device goals and the rest of the network
had to be much stronger, 16 times, than any other links in
the network in order for the model to generate the correct
action sequence.  We added a goal magnification factor
parameter to the original Mannes and Kintsch (1991)
model, Fgoal .  The consequence of this modification is that

links between the goals dominate the processes involved in
retrieval of information from long-term memory and
candidate object and action selection.  The links between
the goals, the display objects, and the actions are the most
important in the model because of the large value of  Fgoal .
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Table 2.  Task goals, device goals, and correct actions for Cricket Graph Task

Step No. Task (TG) and Device goals(DG) Correct Action
Subtask 1   
TG-1: to create a default line graph with

“Serial Position” as X axis versus
“Observed” as Y axis

1 DG-11: to see entry into the line graph
environment

Move Mouse Cursor to Graph

2 Press and Hold Mouse Button Down
3 Move Mouse Cursor to Line
4 Release Mouse Button
5 DG-12: to see Serial Position is selected

as X axis
Move Mouse Cursor to Serial

Position in X axis selection list
6 Single Click
7 DG-13: to see Observed is selected as Y

axis
Move Mouse Cursor to Observed in Y

axis selection list
8 Single Click
9 DG-14: to see New-Plot is selected Move Mouse Cursor to New Plot

10 Single Click
Subtask 2
TG-2:  to edit the graph title

11 D G - 2 1: to see entry into the editing
environment

Move Mouse Cursor to Graph-Title

12 Double Click

The simulation experiment with the Cricket Graph Task
reported here explored the consequences of manipulating
the elaboration parameter, Nsample.  Based on the results of

the initial simulation experiments, we used the following
set of parameter values: Woverlap = 4.0, Fgoal = 16.0 ,

Wactions−excitation = 4.0,  Wactions− inhibition = −4.0,  and
Wassoc = 1.0 .  The argument overlap parameter, Woverlap , is

much larger than the value, 1.0, typically used by Kintsch
(1988) in his simulation experiments.  However, a value of
4.0 was necessary to produce rapid convergence of the
integration process.

4.2  Method
Performing the Cricket Graph Task described in Section
1.4 was simulated in this experiment.  The task was to
reproduce the graph shown in Figure 1 using Cricket Graph
on a Macintosh computer.  Recall that the first subtask is to
plot the data in the column labeled “Observed” as a
function of the column labeled “Serial Position.”  See
Figure 3.  The second subtask is to edit the graph title.
Each of these subtasks is represented in the model as a task
goal.

The task and device goals and correct actions are shown for
each of the 12 steps in Table 2.  Ten steps are required to

accomplish the first task goal, and two for the second.  Four
device goals are associated with the first task goal, and one
for the second.  There are seven major display changes in
the correct sequence; before steps 1, 3, 4, 5, 7, 9, and 11.
The details of the simulation are described in Section 3.3. 

We did 50 simulation runs for each of the following values
of Nsample; 4, 8, 12, 16, and 20.  The remaining parameter

values are listed in Section 4.1.

4.3  Results
4.3.1  Primary Cause of Errors
Our first series of analyses focused on the primary cause of
an error.   There are three possible causes.  First, the model
can fail to include the correct object in the set of candidate
objects during the object selection process in the stage of
execution.  The second is that the correct action-object pair
fails to become the highest activated pair among the
executable action-object pairs during the action selection
process.  The third cause of an error is that the elaboration
process fails to incorporate all of the conditions for the
correct action-object pair  in the elaborated display
representation.
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Figure 6. Probability of selecting correct action after major display change as a function of
Nsample.  All but release are actions to point at correct object.
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Figure 7. Probability of selecting correct action conditional on pointing at correct object.
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The major results of these first series of analyses was that
the first and second causes only generated one out of the
396 errors observed in 250 simulation runs of twelve steps
of the task.   Missing conditions was the sole sources of
errors with one exception.  The model never failed to select
the correct candidate object over all steps and values of
Nsample. There was only one activation failure in selecting

the action, pointing at Graph on step 1 when Nsample = 4.

These processes were not major causes of errors because
they are primarily controlled by the very strong links
between the correct task and device goals and the node
representing the correct object and the correct action-object
pair, respectively.  The sole source of errors was failure of
the elaboration process to include all of the conditions for
the correct action in the network.  In order words, the
model predicts that most errors are description errors.

4.3.2  Error Rates by Step
Recall that the simulation executes all four of its major
processes (input of goals and display representations,
elaboration, candidate object selection, and action
selection) and is given the correct goals and a
representation of the display that results from the correct
action after each major display change, steps 1, 3, 4, 5, 7, 9,
and 11.  The actions all involved moving the mouse cursor
except for step 4 which was to release on the menu item
Line-Graph.  We have partitioned the following
analyses into two sets, the first defined by these steps.  The
second set are the actions on steps 2, 6, 8, 10 and 12.  This
second set of analyses describes what happened after both
correct and incorrect actions on the preceding step.

Figure 6 plots the error rates on  steps 1, 3, 4, 5, 7, 9, and
11 as a function of Nsample.  Figure 6 shows that error rates

decreases as a function of Nsample but that the initial values

at Nsample = 4, and the rates of decrease differ as a function

of step.  For example, pointing at Graph in the menu bar
on step 1 had an error rate of 26% for Nsample = 4, and fell

to  0% at Nsample = 8 .  Pointing at Line-Graph in the

Graph menu, step 3, had an error rate of 74% for
Nsample = 4 and decreased to 14% when Nsample = 20.

Figure 7 shows the error rates for the steps 2, 6, 8, 10, and
12, conditional on the correct preceding action selection.
Again, the error rates decrease as a function of Nsample but

that the initial values, and the rates of decrease as a
function of step differ across steps.  Step 2 was easiest;
steps 6, 8, and 10 were of moderate difficulty; and step 12
was the hardest.

The results of the simulation shows that pointing at Graph
in the menu bar and grabbing it (steps 1 and 2) and
releasing on Line-Graph in the Graph pull down menu
(step 4) were the easiest steps.  Interactions with the
variables selection dialog box (steps 5 through 10) were of

intermediate difficulty.  Pointing at the Graph-Title and
double clicking it (steps 11 and 12) were hard.   Pointing at
Line-Graph in Graph pull down menu was the hardest
step.  This section describes the reason why error
probability differs from steps.

The simulation results show that memory retrieval failures
during the elaboration process are the cause of errors made
by the model.  The retrieval failures cause propositions to
be omitted from the network required to satisfy the
conditions of the correct action.  Kitajima (1995) has
shown that the differences in error rates are due to the
number of conditions in the correct action that must be
retrieved from  long-term memory and the probability that
a specific condition will be retrieved.

Pointing at Line-Graph in Graph pull down menu was
the hardest step because three propositions had to be
retrieved from long-term memory in order to satisfy the
conditions of this action.

The correct actions for the remaining 11 steps has just one
condition that had to be retrieved from long-term memory.
The difficulty of these steps shown in Figures 6 and 7 are
determined by differences in the retrieval probabilities,
calculated using formula F-1 (Raaijmaker & Shiffrin,
1981).

In order to understand how retrieval probabilities are
determined by F-1, we need to consider several special
cases.  This formula is the ratio of the strength of the link
between the retrieval cue and the proposition to be
retrieved from LTM divided by the sum of the strengths of
the links between the retrieval cue and all propositions that
link to the retrieval cue.  The probability of retrieval is
determined by the number and strength of these competing
associations.

Let PLTM  be the proposition representing the one condition
of the correct action.  See Figure 8.  Suppose that there is
one cue, Pdisp , in the display that links to PLTM  by a single

shared argument.  In the first case, Pdisp  has linkages with

Pdis ′p , Pdis ′′p , PLTM , and PLT ′M , but neither with Ptask , the

task goal, nor with Pdevice , the device goal.  In this case, the
probability for Pdisp  to retrieve PLTM  in a single memory

retrieval is 0.25.  The second case is where  Pdisp  is linked

to Pdevice  in addition to Pdis ′p , Pdis ′′p , PLTM , and PLT ′M .  In

this case, the probability for Pdisp  to retrieve PLTM  is

reduced significantly to 0.05 = 1 16 + 4( ).  The third case is
where  Pdisp  is linked to both Ptask  and Pdevice  in addition

to Pdis ′p , Pdis ′′p , PLTM , and PLT ′M .  The probability is only

0.028 = 1 16 + 16 + 4( ).
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× FgoalWoverlap

Figure 8. Explanation of mechanism of potential retrieval failure due to interactions between the goal magnification
factor parameter, Fgoal , and the memory sampling process.

Although the absolute values of probabilities that the
condition proposition is retrieved from long-term memory
in the simulation are different from the above values, the
significant effects of powerful links between the cue
proposition and the goals on the retrieval probabilities of
the condition proposition are maintained.  On steps 1, 2,
and 4, the retrieval cues for the condition proposition had
no linkage with the goals, which correspond to the first
easiest case.  All actions involving the variable selection
dialog box correspond to the second case.  Steps 11 and 12
are the example of the third case.

4.3.3  What The Model Does When It Makes An Error
In the last section, we showed that error rates range from
0% to 70% as a function of steps and Nsample.  Errors were

caused by failures of the elaboration  process to include in
the network a necessary condition for the correct action.
However, when the model makes an error, it does not
respond randomly.  Recall that the model can only execute
an action on one of the three candidate objects.  The model
described in this paper makes errors by performing a
possible action on one of the two incorrect candidate
objects.  The underlying architecture also permits incorrect
actions on the correct  object.

In the first step of the task, the correct action is to point  at
GRAPH on the menu bar.  For 50 simulation runs where
Nsample = 4, the model correctly pointed at GRAPH 37/50

times.  On 20% of the simulation runs, it pointed at EDIT.
It pointed once at the highlighted cell in the spreadsheet
shown in Figure 2, and it pointed twice at FILE in the
menu bar.  On step 2, the model grabbed the pointed at
object 45/50 times.  The model pointed at some other
object on the five remaining simulation runs.  When the
model was interacting with the variable selection dialog
box on steps 5 to 10, all errors involved either pointing at
or single clicking on a wrong object in the dialog box.

In summary, errors made by the model are strongly
constrained.  When the correct action is “move the mouse
pointer to a specified object”, the most frequent error is to
point at a wrong object.  Once the model has pointed at an
object, it very frequently executes the action on this next
step that would be correct if it pointed at the correct object
on the previous step.

This behavior of the model is caused by the very different
ways that the candidate object and action selection
processes react to variations in the elaboration parameter,
Nsample. The candidate object selection process is

unaffected by changes in Nsample.  With one exception, the

model included the correct object among the candidate
objects in all simulations of each step.  Furthermore, the
model selects objects related to the task and device goals
for the other two incorrect candidate objects.

The action selection process is very sensitive to reductions
in Nsample.  Missing necessary conditions for the correct

action block its execution.  However, a wrong action will
be related to the correct  action because the action selection
process is dominated by the links between possible actions
and the goals.  The wrong objects and the actions on those
objects are closely related to the goals which means they
are closely related to the correct actions on the correct
object.

4.4  Recovery From Errors
In this section, we describe a small simulation that shows
that the candidate object selection process in the stage of
execution enables the model to recover from errors.  In this
experiment, we simulated the task of editing the Graph-
Title, steps 11 and 12.   The correct actions are pointing at
the Graph-Title followed by double clicking it.  Here
again, the behavior of the model is determined by the
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difference in how the candidate object and action selection
processes react to variations in Nsample.

We focused on the error pointing at the Edit menu
followed by pulling it down.  Upon the detection of this
event, the model was given the display defined by the items
on the Edit menu appearing on the screen.  The model
then executed all four processes in the action cycle.  In the
candidate object selection process, the model selected three
candidate objects which did not include any of the Edit
menu items.  There were no links between the task and the
device goals and any of the items on the Edit menu.
However, the model included Graph-Title on the list of
the candidate objects.  In addition, the model successfully
retrieved the propositions representing the conditions for
the correct actions during the elaboration process.  The
model was then able to select the action of pointing at the
Graph-Title and then double clicking it.

What is particularly  intriguing about this last simulation
result is that we did not incorporate into the architecture
any special mechanisms for error recovery.  Error recovery
is a consequence of the regular action planning mechanisms
of the model.  Also note that if the incorrect menu selection
exposed a menu item that overlapped with task and/or
device goals, it would have been selected as a candidate
object.  The model could have  continued on this erroneous
course of action .

5.  DISCUSSION
5.1  The Mannes and Kintsch (1991) Model
Kitajima and Polson (1992, 1994) and this paper develop a
model of display-based human-computer interaction based
on Mannes and Kintsch’s (1991) construction-integration
model of action planning.  Mannes and Kintsch (1991)
added a new construct to Kintsch’s (1988) construction-
integration model, called the plan element.

Doane, Mannes, Kintsch, and Polson (1992a) and Doane,
McNamara, Kintsch, Polson, and Clawson (1992b)
extended this model to account for the behavior of expert
users of UNIX who are able to combine elementary UNIX
commands into complex interrelated sequences of actions
that accomplish a novel goal.

5.2  Extensions
Our model extends previous models of human-computer
interaction using the construction-integration framework in
four ways.

5.2.1  Errors
The original goal of our simulation experiments was to
demonstrate the sufficiency of the model, that is, to show
that it can generate correct action sequences (Kitajima and
Polson, 1992, 1994).  Our major result, in part
serendipitous, was the discovery of mechanisms by which
the model accounts for errors in expert performance (rates
in the range from 5% to 20%).  Furthermore, the model can
explain some forms of error recovery.  To the best of our

knowledge, the results of this simulation experiment are the
first detailed account of a well-known and puzzling result
in the human-computer interaction literature, that experts
have relative high error rates, up to  20% (e.g., Card, et al.,
1983; Hanson, et al., 1984).  The model is capable of
simulating error rates in this range with values of
Nsample ≈ 12 .

Previous applications of the construction-integration model
to text comprehension (Kintsch, 1988) and action planning
(Mannes and Kintsch, 1991; Doane, et al., 1992a; Doane, et
al., 1992b) had not discovered any impact of the memory
sampling process.  The memory sampling process was
originally incorporated into the Kintsch’s (1988) model to
account for the fact that only part of our extensive
knowledge about concepts in a paragraph will be actually
brought to bear during any cycle of the comprehension
process.  It turns out, especially for text comprehension,
that the resulting representation is redundant and therefore
quite robust.

Our model just simulates action slips (Norman, 1981;
Reason, 1990).  Recall that it is given the correct goals for
the task.  It can account for  the observed error rates in
skilled performance as well as the fact that action slips
generate errors that are closely related to the correct action
(e.g., Reason, 1990).  The ability of the model to simulate
slips as well as some simple forms of error recovery are do
to the more complex action selection mechanism
incorporated into our model.

Action selection during the stage of execution involves two
process: 1) selection of three candidate objects, and 2) the
selection of the correct action object pair from a set of all
possible actions on the three candidate objects.  These
processes react very differently to variations in Nsample.

The first process is unaffected by variations in Nsample and

always includes the correct object and two other related
objects in the set of candidate objects.  This results in errors
that are related to the correct action.  The second is quite
brittle.  The model makes errors if Nsample, the elaboration

parameter, is not set to a large value, causing conditions
necessary for execution to be omitted from the network.
We argue that the elaboration parameter describes a speed-
accuracy tradeoff process where low values of the
parameter reduce the amount of time taken by the
elaboration process. Our model claims that experts’ errors
are slips caused by failure to generate complete
representations of objects on the screen.

5.2.2  Selection of Candidate Objects
Second, the model has a more detailed representation of
information contained in realistically complicated displays.
The environment we simulated, the Cricket Graph Task,
was more complex.  Any principled model of display-based
human-computer interaction involving situations where
there was a large, cluttered screen with many candidates for
possible action would have to include mechanisms that
select a subset as possible candidates for action.  We found
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that the construction-integration process can successfully
select candidate objects.

In earlier versions of the model (Mannes and Kintsch,
1991), the simulation was simply provided with a list of
three candidate objects at each step.  However, these
experiments used very simplified representations of the
external world.  There were only a few candidate objects,
and selecting three out of four or five was not a distortion
of the processes being simulated.

5.2.3  The Goal Magnification Factor
In  order to get the model to successfully perform any task,
we had to introduce a new parameter that multiplied the
strengths of the links between the goals and the rest of the
propositions in the network.  These link strengths are a
factor of 16 stronger than the remaining links
interconnecting arguments in the network.  The disparity is
necessary for the model to be able to perform correctly.

These very powerful link strengths mean that the task and
device goals have a very strong influence on the integration
process; on the candidate objects that are selected during
the first construction-integration cycle, and on the highest
activated action that is actually executed during the second
construction-integration cycle.

5.2.4  Grain Size of Actions
Our fourth major extension to Mannes and Kintsch (1991)
concerns our assumptions about the grain size of action.
Both Mannes and Kintsch (1991) and Doane, et al. (1992a,
1992b) assumed large grain size actions, e.g. execution of
complete commands.  Kitajima and Polson (1992, 1994)
and the model described in this paper assume a much
smaller grain size, individual mouse cursor movements,
click, double click, and hold.  Our model contains no
representation of sequences of actions like “select item X
from menu Y.”  The model computes such action
sequences based on the user’s goals and the changing state
of the display.

6.  CONCLUSIONS
This paper describes three sets of theoretical results.

The first is a synthesis of a diverse collection of writings on
display-based human-computer interaction and problem
solving including Hutchins, et al. (1986), Larkin (1989),
Shneiderman (1982),  and papers describing the
development of the Xerox STAR  (Smith, et al, 1982;
Bewley, et al, 1983).  The key assumption incorporated in
this paper is that skilled action involves an action cycle
consistent with the framework presented by Norman (1986,
1988) and incorporated into the Hutchins, et al. (1986)
analysis of display-based human-computer interaction.

The second set of theoretical results is the development of a
model within a cognitive architecture defined by Kintsch’s
(1988) construction-integration model of text
comprehension.  We made several extensions to the
Mannes and Kintsch (1991) model of action planning.  The

model simulates an environment in which there is a
complex display with many irrelevant objects.  The model
selects a small number of objects for possible action and
focuses its attention on relevant information in the display
and knowledge stored in long-term memory. We modified
the Mannes and Kintsch action representation.  We
assumed a richer structure on actions incorporating
intentions into the action representation.  Another important
difference is that we defined actions at a much smaller
grain size: cursor movements, single clicking and double
clicking the mouse button, and the like.

The resulting model of skilled performance is strikingly
different from typical models of expert performance and
error (Anderson, 1993; Reason, 1990; Card, et al., 1983).
Typical models assume that skilled performance is
mediated by detailed, large grain size action plans stored in
long-term memory.   Card, et al. (1983) refers to them as
methods; Reason (1990) assumes that skilled performance
is mediated by action schemata (Norman, 1981).  Bovair, et
al. (1990) showed that a rule-based model can define
methods or action schemata as tightly integrated collections
of 5 to 15 rules.

Even more radical is the assumption that skilled
performance involves the rapid generation of correct action
sequences and not retrieval of stored rules or schemata
from long-term memory.  Action planning is assumed to be
analogous to text comprehension (Mannes and Kintsch,
1991) and is controlled by knowledge retrieved from long-
term memory that links display objects, goals, and the
correct action.

The most important set of theoretical results was to show
that the model provides a principled explanation of errors
made by skilled users.  The model is not consistent with a
large fraction of current theories of skilled performance.
However, it provides a principled explanation for the fact
that error rates in skilled human-computer interaction are
the range of from 10% to 20%.  In addition, it also accounts
for the fact that errors are not random; the incorrect action
is often related to the correct action (Reason, 1990).

When the model makes an error, it has attempted to select a
correct action based on incomplete knowledge.  The
incorrect action will be highly constrained by the user’s
current goals, the current state of the display, and the partial
knowledge that was successfully retrieved from long-term
memory.  The model is also capable of recovery from
errors.  What is important about all of these results is that
they are consequences of the basic architecture of the
model, i.e.,  skilled use involves the rapid generation of the
correct action sequence and that actions are defined at a
small grain size.

There are additional implications of the model.  In a related
research program, Polson, Lewis, Rieman, and Wharton
(1992) have used the construction-integration framework to
propose a model of learning by exploration.  The Polson,
et. al. (1992) model assumes that correct actions with labels
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that are unrelated to the user’s goals or that are hidden will
be difficult to acquire by exploration and might be difficult
to remember.  The model of skilled performance presented
in this paper can successfully perform such actions.
However, the knowledge required to link the display
objects, goals, and poorly labeled or hidden actions must be
retrieved from long-term memory.

For the novice, this linking knowledge is difficult to
discover by exploration and thus will be hard to acquire and
may be difficult to retain.  For the expert, performance of
an action that involves such links requires their successful
retrieval from long-term memory.  These simulations show
that such steps are error prone.  Thus, there is a direct link
between actions that are hard for novices to learn and for
experts to perform reliably.

In summary, we synthesized a variety of views on display-
based, human-computer interaction into a single model
using the construction-integration architecture.  The
architecture has provided us with a principled explanation
for the error rates of expert users.  In addition, the
architecture also enables us to give a principled account of
the fact that errors are not random but are closely related to
the appropriate action.  Finally, combining our results with
related work on learning by exploration leads to the
intriguing claim that steps that are difficult to learn for the
novices will tend to be highly error prone for the experts.
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APPENDIX A
A.1.  Construction Process
At the first construction process, in the object selection
process, the following formula defines the strengths of
links for Pi , Pj ∈ {task goals, device goals, display

representation, retrieved information from long-term
memory, candidate objects};

For i ≠ j;

WPi ,Pj
= WPj ,Pi

=

Woverlap × number of shared arguments( ) +

                  
Wassoc  ;  if Pi  and Pj  are associates

0.0 ;  otherwise

























×
Fgoal  ;  if Pi  or Pj  ∈ task goals{ }
1.0;  otherwise













×
Fgoal  ;  if Pi  or Pj  ∈ device goals{ }
1.0;  otherwise













For i = j;

WPi ,Pj
= 1.0

At the second construction process, in the action selection
process, the above holds for Pi , Pj ∈{task goals, device

goals, display representation, retrieved information from
long-term memory}.  In addition, for the same set of Pi

and, Lk ∈ {actions},

WPi ,Lk
= WLk ,Pi

=

Woverlap × number of shared arguments( )

×
Fgoal  ;  if Pi  ∈ task goals{ }
1.0;  otherwise













×
Fgoal  ;  if Pi   ∈ device goals{ }
1.0;  otherwise












In case that all consequences of Lk  have already been
found in the elaborated display representation, links for
Pi ∈ consequences of Lk{ } are replaced by

WPi ,Lk
= Wactions− inhibition

And, asymmetric causal relations are considered for
Lk , Ll ∈ actions{ };

For k ≠ l;

WLk ,Ll
=

Wactions−excitation ;  if Lk  supports Ll
Wactions− inhibition ;  if Lk  inhibits Ll
0.0;  otherwise









For k = l;

WLk ,Ll
= 1.0

A.2.  Integration Process
The integration process is formally defined as follows.  A
set of nodes that are interconnected by the construction
process is represented by

  
S1,L, Si ,L, SN , R1,L, Rj ,L, R ′N{ },

where Si ’s are activation nodes representing task goals,
device goals, and display, and Rj ’s are receptor nodes

representing information retrieved from long-term memory,
and candidate objects in the object selection process, or
actions in the action selection process.  N  and ′N  are the
number of source nodes and the number of receptor nodes,
respectively.

With this indexing system, the pattern of activation after ν-

th flash can be expressed by a vector,   
r
A ν( ) , and the

strengths in the network, by a matrix, W ,  as follows,
respectively;

  

r
A ν( ) ≡

r
AS

ν( ) ,
r
AR

ν( )( ) ;  

r
AS

ν( ) ≡ AS1

ν( ) ,L, ASN

ν( )( )
r
AR

ν( ) ≡ AR1

ν( ) ,L, AR ′N

ν( )( )

  

W ≡

WS1,S1
L WS1,SN

L L

WSN ,S1
L WSN ,SN

WS1,R1
L WS1,R ′N

L L

WSN ,R1
L WSN ,R ′N

WR1,S1
L WR1,SN

L L

WR ′N ,S1
L WR ′N ,SN

WR1,R1
L WR1,R ′N

L L

WR ′N ,R1
L WR ′N ,R ′N

























Where,   
r
AS

ν( )  and   
r
AR

ν( )  are vectors representing activation
values of the source nodes and receptor nodes, respectively.

The initial activation values for the source nodes,

ASi

0( ) for 1 ≤ i ≤ N( ), are set to 1.0, and for the receptor

nodes, ARj

0( ) for 1 ≤ j ≤ ′N( ), to 0.0.  The activation vector

after ν-th activation flash,   
r
A ν( )

, is defined as follows;

For activation nodes, they are reset to the constant value.
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ASi

ν( ) = 1.0

For receptor nodes,

ARi

ν( ) = N ×
max(0.0, ÃRi

ν( ) )

max(0.0, ÃRk

ν( ) )
k =1

′N

∑

where, unnormalized activation value, directly calculated
by matrix multiplication,

ÃRi

ν( ) = ASj

ν −1( ) × WSj ,Ri
j =1

N

∑ + ARj

ν −1( ) × WRj ,Ri
j =1

′N

∑

= WSj ,Ri
j =1

N

∑ + ARj

ν −1( ) × WRj ,Ri
j =1

′N

∑

is normalized so as to the sum of activation stored in the
receptor nodes is equal to the sum of activation in the
activation nodes, N.

In order to estimate the degree of convergence of the
pattern of activation, average change of the activation
vector is used;

ε ν( ) = 1

′N
× Ai

ν( ) − Ai
ν −1( )

i=1

′N

∑

When this value reaches below a criterion value, say, 0.01,
the network is considered to be stabilized.

The value of normalization factor might be defined
arbitrarily.  However, the above equations would suggest
that effectively it defines relative contribution of the source
and receptor nodes in updating the activation value of
receptor nodes.  The smaller the normalization factor
becomes, the less significant the activation value of
receptor nodes becomes.  The current normalization
procedure would correspond to a situation where source
nodes and receptor nodes equally.


