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ABSTRACT

The Kitajima and Polson model of display-based
human-computer interaction (1992994, in press)
can make errors even the model is provided with
sufficient knowledge to perform correetctions. The
major cause of errors ishe failure toretrieve from
long-term memory th&nowledge necessary to select
a correct action.  This paper derives aset of
mathematical formula¢hat calculatethe probability
of an error at a specific step in a task. Tieishnique
can replace ¢engthy simulationruns thatwould be
required toobtain reliableerror probabilities. Each
step in an examplgraph-drawingtask is analyzed
showing thefactors that determinethe likelihood of
an error.

1. INTRODUCTION

Kitajima and Polson (1992, 1994, impress) have
proposed a comprehension-based, performamodel
of skilled use of applications wittgraphical user
interfaceslike those of the Apple Macintosh and
Microsoft Windows that accounts forboth correct
performanceand errors made byexpert users. The
model is based onHutchins, Hollanand Norman’'s
(1986) action theory, in which the user&tion
selection process isnodeled as acyclic process,
consisting ofprocesses of (1) evaluatiribe current
display by using the current goals and knowledge
retrievedfrom long-term memory by a probabilistic
memory sampling process, (2) selecting small

number of appropriate screen objects for a next action,
and(3) selecting an appropriate action on one of the
objects. Theselectedobject and action are the
outcome of a comprehension procesplied to the
currentdisplay. Themodel is anextension of the
Mannes and Kintsch (1991) model adtion planning
which is based on the Kintsch’s (1988) construction-
integration theory of text comprehension.

In a set of simulation experiments reported in
Kitajima and Polson (1992, 1994, in press), fand
that the model makes errors even if ipisvidedwith
correctgoalsandsufficient information in long-term
memory for selectingcorrect actions. Errors are
caused by failures to retrieve critical information, such
as affordances ofscreen objects, from long-term
memory in the display evaluation process. Thisl

of error is calleddescription error(Norman, 1981).
The Kitajima and Polson (1992, 1994, irpress)
model $mulateserror rates of skilledusers, in the
range of 10% ~ 15% (Card, Moran and Newell, 1983).

In general, in order to obtain reliable error
probabilities of action selections in a givaask
context a large number afimulation runswould be
required, wherethe task context idefined by the
currentgoals, directly accessible knowledge iong-
term memory, i.e. long-term workingmemory
proposed by Ericsson and Kintsch (1995), and
information displayed onthe screen. However, we
found that, if some conditions were satisfied, coeld
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Thecomprehension-based, performance model of display-h#6edKitajima and Polson, in

press), based on Hutchins, Hollan, & Norman’s (1986) action cycle theory framework.

replacesuch a lengthy simulation runs with a single
mathematical calculatiorbecause ofthe model's
underlying mechanism of error generation.

The purpose of this paper is to providelexivation of
the mathematical formulae tocalculate error
probabilities of action selections for a given task
context. The next section givesbaef introduction
to the Kitajima and Polson’s model of action
selection indisplay-basedCl, followed by a section
describing mathematical derivation tfie formulae.
Finally, a graphdrawing task is analyzedshowing
how error probabilites vary with the
interrelationships of theknowledge necessary for
action selections.

2. THE MODEL OF DISPLAY-BASED HCI
Figure 1 illustrates the model. The modebé&sed on
Hutchins, Holland, and Norman’s (1986) action

theory frameworkconsisting of the followingfour
basic components:

@

@

©)

@)

goals representing what the user wants to
accomplish, whictare aschematic outline of
the actionsequencahat will accomplish the
task,

a task environmentvhich is theworld that
reacts tothe user’'s actionsind generates new
responses by modifying the display,

the stage of evaluation comprised of the
processesthat evaluate and interpret the
display, and,

the stage of execution comprised of the
processeshat selectand executeactions that
affect the world.
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The KitajimaandPolson’smodel incorporategoals,
two processes for the stage of evaluatdodtwo for
the stage of execution.

2.1 Task Goal and Device Goal

The model assumes that skilled usersave a
schematic representation tfie task that is in the
form of a hierarchical structure involving two kinds of
goals: task goals and device goals Our goal
representation is taken direcfipm the Yoked State
SpaceHypothesisproposed byPayne, Squibb, and
Howes (1990). Payne, et al. assume thisd¢overing
how to carry out a task involvesearching of two
problem spaces. The first isspace ofpossible task
states. The second is a space of possiblécestates
that are required toachieve agiven task state. We
assume thaeachtask goal isassociatedvith one or
more device goals. Theassociateddevice goals
specify device states that must &ehieved in order to
satisfy the task goal.

Given a task goahndits associatedlevicegoals, the
model simulates asequence ofaction selections as
follows.

2.2 Stage of Evaluation
2.2.1 Generating Display Representations

At first, the model generates a representation of the
display. The display representationonly includes
information about identity ofeach object on the
display andits appearancee.g. highlighted,pointed-

at, draggedetc. No information about what actions
can be taken on ambject, or its meaning and
relationships to other objects in the display is
included in this initial display representation.

2.2.2 Elaborating the Display

All such information isgenerated bythe elaboration
process whichretrievesinformation from long-term
memory bya randomsamplingprocess Theretrieval
cues are the representations of tnerentdisplay, the
task goalandthe devicegoals. The probability that
each cueretrieves particulainformation in a single
memory retrieval process is proportional to the
strength of the linkbetweenthem. The model
performs multiple retrieval attempts during the
elaboration process. A parametéhe elaboration
parametef Ng.poation: CONtrols the number of times

each element of the display and goal representations is
used as retrieval cukes

The random sampling process is taken from Kintsch’s
(1988) construction-integration model. Kintsaked
the Raaijmakerand Shiffrin’'s (1981) model to
simulate theprocess of retrieving informatiofrom
long-term memory for incorporation into the network.
Kintsch assumed that the propositiongpresentation
of a sentencenomentarily activates the meanings of
words and other related information in long-term
memory. This knowledge is incorporated in the
network duringthe construction phase. Kintsch and
Mross (1985) presenevidence infavor of these
assumptions.

The retrieved information elaborates the display
representation,  providing information about
interrelationships  between screen objects,
relationshipsbetweenthe taskand devicegoals and
screenobjects,and other attributes okcreenobjects.
The elaborated display representation is model's
evaluationof the current display inthe current task
context.

2.3 Stage of Execution

In simulation of the stage of execution, theodel
selects threeandidatescreenobjectsand then selects
an action-object pair. Each of these selection
processesinvolves two phasesconstruction of a
network of propositions, in which thenetwork is
linked up by the argument overlapmechanis® a
principle from the Kintschand van Dijk's (1978)
model of text comprehensiofgllowed by integration
of the network in which an iterativespreading
activation mechanism is used to make the selection.

The model represents goals and display in
propositions, like QJECT12 is-on-screen In the
memory sampling process,the argurment, such as
OBJECTL2, is used taetrieve informationfrom long-term
memory that ha€BJECTL2 as its argument.

21t is assumedthat, when two propositions in the
network share one argument, they are connectedlmka
of strength, the argument overlap weight. Whehey
shareN arguments, thetrength is multiplied byN. For
example, thetwo propositions, QBJECT12 is-on-

screen , and GBJECT12 has C ALCULATORMENU!l TEM are
linked by the shared argumer@BJeCcTl2, andgiven one
unit of the argument overlap weight for the liskkength.
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Figure 2. Actionrepresentation fopointing
atGr aph menu. The condition, C-1ust
be retrieved fom long-term memory irorder
for this action to be executed.

2.3.1 Selecting Candidate Objects for Next Action

At first, the model limits its attention to a few
number of screen objects out of ~100objects
displayed onthe screen. Theelected screenbjects
are candidates for the nexttion to beoperatedupon.
The selection oftandidateobjects isperformed in a
network which is incorporating nodes representing the
goals, the evaluation of theurrentdisplay, and the
candidate object nodes, one for each screen object.

The object selection process tominated by two
factors. The first factor is the strength of attention to
the goals. Thenodelassumes that strong attention
characterizes expert behavior, tigtrapid and correct
action selections (KitajimandPolson, 1992, 1994).
The modelsimulates the attention mechanism by a
mechanism that reinforces the links between the goals
andthe other propositions. These specialinks are
multiplied by the attentionparameter Large values

of the attention parameter are required for the model to
simulateexpert behavior. Theecond isthe number

of propositions thatrre necessary to bridgkee goals
and the candidateobjects. Note that thepreading
activation mechanisman only activate significantly
the nodesthat areless than two linksawayfrom the
goal$. The greaterthe attentionparameterand the

3 The nodes representingthe current taskgoal, the
current devicegoal, and the screen objects serve as

less the number of bridgingropositions, themore
activation flows to goal related propositions.

2.3.2 Selecting Action

The modelconsidersall possible actions oreach
candidate object. The model incorporatespb8sible
actiond, such as “moving the mouseursor to a
menu item inorder todisplay a pull-down menu.”
The selection of next action is performed ineiwork
which is constructed by nodes representing the
evaluation of thecurrent displayand all possible
object-action pairs. The result of the activation
process is dominated bythe same two factors
described above.

The action representatioriaclude conditions to be
satisfied for their execution. The conditions are
matched against the elaborated display representations.
Some conditionsare satisfied bythe current screen,
others by information that wa®trievedfrom long-
term memory in the elaboration process.
example, themodel cannot select action todouble
click a documenticon for editing unlesdoth of the
following conditionsare available in theelaborated
display representations. The first is screen
condition, “the icon is currently pointed at by the
mouse cursor’andthe other is the information that
“the icon can be double clicked.” Obsentbat if
information about anecessarycondition is missing
from an elaborateddisplay representation, thmodel
cannot perform that action on ticorrectly described
object.

For

Figure 2 shows an example of actimpresentations
from our experiments, in which a grapghawingtask
using Cricket Graph, a Macintosh application, was
simulated. The tasklescriptionand a sequence of
actions necessary foraccomplishing the task are
shown in the Appendix. Figure 2 illustrates the

activation sources. Irthe integration process,unit

activation values allocated to tteetivation sourcesflow

to therest of the network.Due to a largevalue of the
attention parameter, the goals becomergirsources of
activation.

4Representations of actiordefine differentfunctions of
single physical actions imany differentcontexts. For
simulating theCricket Graph task, the model defines
eighteen cognitive actions on six physicalctions;
Move-Mouse-Cursor, Single-Click, Double-Clicl{old-
Mouse-Button-Down, Release-Mouse-Button, diygpe.
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action representation fquointing atGraph menu,
which is the first step for théask. There are six
conditions to be satisfied fats execution; thethird
one, GRAPH  is-not TEXT-OBJECT, has to be
retrievedfrom long-term memorywhereaghe others
are satisfied by the current screen. Action
representations for elevesteps out of twelvéor the
Cricket Graph task, had only one condition to be
retrieved from long-term memory, like this step.

3. ERROR PROBABILITY
3.1 Error Generation Mechanism

There are three ways the model can make errors. The
first is that theprocess of selectingandidateobjects
for the next action fails tinclude the correct object
on the list of candidateobjects, becausethe node
representing theorrectobject was notctivatedhigh
enough to beselected awne of candidates. The
second isthat thecorrectaction fails tobecome the
highest activated action amongexecutable actions
through thespreadingactivation process. In the
model’s terms, these kinds of errors canaberibed to
missing bridging knowledgethat had to be retrieved
from long-term memory during the elaboration
process.

The third is that the elaboratiomprocess fails to
incorporateall of the necessaryconditions for the
correct action inthe elaboratedlisplay representation.
Low values of the elaboratioparameter carcause

this error. Parameter values in ttamge of 12 to 20
causedhe model tosimulateerror rates in therange

of 10% to 20% (Kitajimaand Polson, 1994, in
press). Weargue that the elaboratiorparameter
describes a&peed-accuracy tradegifocesswhere low

values of theparametereducethe amount of time
taken by the elaboration process.

3.2 Mathematical Calculation of Error

Probability

The probabilities of errors generated by the tloidse
can becalculatedmathematically when a task context
for action selections ispecified. Wederive the
formulae starting with adetailed eplanation of the
mechanism of memory sampling process.

The retrieval process model wéisst described by
Raaijmakerand Shiffrin (1981). In theelaboration
process of our model, each element (argumergaat
proposition, representing a goal oscreen bject,

serves as a retrieval cue fpropositionsstored in
long-term memory. Each argument inthe cue
propositions isused asthe retrieval cue Nggporation

times.

The retrieval probabilities ardefined adollows. Let
C,(1=n< N) be the n-th condition to beetrieved
from long-term memory for an action to be
executable, where N is the number of such
conditions. And let X,; (1<i<M,) be the i-th
retrieval cue forC,. Xni, representing either the
current task goal, thedevice goal, or one of the
current screerobjects, shares at least onargument
with C,. M, is the number of such propositions
from these retrievatues. In the CrickeGraphtask,
M, was around severl wasthree for the third step
which is to selecti ne in the pull-down menu and
one for the otheelevensteps. The probability that
proposition Xni will retrieve proposition C,,
P(C,1X,), is given by the following formula;

WX .
P(Col %) = Ji ,

WXnyi X

X D{ all propositions but X, ; }

where Wy, 20 is the strength between

propositionnodes X,; and X;, which is defined by

the argument overlapreight, W, andthe attention
parameterF .

Figure 3 illustrates interconnections amowarious
components of the network. Eawdtrieval cue, X, ;,

is connected with propositions in long-term memory,
andamong themselves. The numbersparentheses
are typical link strengthsused in the simulation
experiments, assuming one overlappiaggument
betweentwo interconnectedpropositions. As the
result of very strong attentiorparameter values,

F =16, the goalrelatedlinks, if they exist,have a
tremendous effect othe results of memory sampling
process. Namely, a display representation, if
connected with a goal, cannot be a promigieigieval
cue for a condition inlong-term memorybecause
most of itseffort for memory sampling isabsorbed
by the strong link to the goal. In the simulation of
the Cricket Graph taskP(C,| X, ;) rangedfrom 0.01

to 0.1.
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task-goal | device-goal | display [ LTM
task- F2xW FxW | FxW
goal 1) (1024) (64) (64)
device| F2xw FxW | Fxw
goal (1024) 1) (64) (64)
display FxW FxW W w
(64) (64) 4) 4)
LT™M FxW FxW W W
(64) (64) 4) 4)

Figure 3. Interconnection among goals, display,
and long-term memory.  The numbers in
parenthesesare link strengths used in the
simulation, being the attentigparameterF is
set to 16, and the argument ovenagight, W,

set to 4, and assuming one overlapping
argument between two components.

Next, we focus on an evenR,, in which C, is

retrieved from long-term memory by one amore
retrieval cuesand in one or more retrievahttempts.
Since these eventre independerfrom eachother,
the probability of selecting ecorrect action by
retrieving all the conditions iscalculated by the
following formula;

P(Correct Action) = 1— P(Error)
=P(R) x...xP(R,) x...x P(Ry) @)

where P(R,) is the probability that the evenR,
occurs.

Since the evenR, can happen when #ast one of
M, cues successfully retrieves,, its probability is
calculated as follows;

My
P(Rn)=1—_|j|l(1— P(R)). ©)

where P, (R,) is the probability thati -th cue, X, ;,
causes the everR,. Since X ; is used as &etrieval

cue Nganoration times and the probability that a single

memory sampling trial successfultgtrieves C, is
given by (1), P, (R,) can be represented as follows;

Pi(R,) =1- (1= P(C,| X, )) Neatersion @

Table 1. The reteval cues forthe first step of the
Cricket Graph task and the number of links freath
cue.

. . . number
Cues in the Display Representations of links
GRAPH is-On-screen 12
GRAPH isa S CREENOBJECT 45
GRAPH isa G RAPHMENUI TEM 14
GRAPH is-equal-to THE GRAPH- TO- 15
BE- POINTED- AT
GrAPH is-not-highlighted 12
GRAPH is-not-selected 12
GRrAPH_is-not-grabbed 12

In summary,error probability for an action selection
can be calculated by (2) when the strengthiéing® in
the network for the task ispecified. The probability
distribution is defined by (1) when both the
representations of the task goal, ttevicegoals, the
display, and long-term memory,and the value of
attention parameter arespecified. Note that the
strength of argument overlgmrameter,w, has no
effect on the probability distribution.

4, CALCULATION OF ERROR
PROBABILITIES FOR THE CRICKET GRAPH
TASK

These formulae can beaised to calculateerror
probabilities when we could expeetrorsonly due to
failure of retrieval of necessargonditions for the
correct action. Wefound that this condition was
satisfied in the simulation experiments vegorted in
detail in Kitajima and Polson (in press). They
conducted 5Gimulation runsfor twelve steps of the
Cricket Graphtask with five elaboratiorparameter
values; 3,000 action selectionswere performed in
total. See thé\ppendix forthe taskdescription and
the simulated sequence of actions. Thbtained 396
errors, all of whichexcept for one were due to
missing conditions, namely, action slips.

Figure 4 showserror probabilities for the Cricket
Graph task calculated byapplying theseformulae,
which provides statistically more reliable error
probabilities for the simulatedituations than the
experimentally obtained values from 3,000 simulation
runs. By observing the figure, wean group the
curvesinto four clusters. Each cluster isdifferent
from the others in terms of thdegree of error
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Figure 4. Error probabilities for each step in the Cricket Graph task as a function of the elaboration parameter.

proneness. In the following, theauses oflifferences
between clusters are examined.

Cluster 1 is defined by action selections at steps 1, 2
and 4. Conditions for these actionsonsisted one
proposition to beretrievedfrom long-term memory.
None of the cues for the conditiggroposition was
linked to agoal proposition. For example, step 1
requires the condition C-11 shown in Figure 2 for its
execution which could be retrieved from seven cues in
the display representations as shown in Tabl&dch

cue was connected topropositionsrepresenting the
display andthosestored inlong-term memory. The
arguments, shown in small cap letters in Table 1, are

used to establish linkagesbetweenthem by the
argument overlap mechanism. In Figure 3, teds
connecting display and, display or LTMre relevant
here. Since thenodel providesqualstrength,W, to
each link the retrieval probability of C-11 for each cue
is calculated byinverting the number of links shown
in the right column of Table 1 (see equation (1)). The
probability that none of theseues retrieves the
condition proposition forNgaporaion =1 1S given as

follows;
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P(Error (stepl))
=1-P(Rui;;C-1lisretrieved from LTM)

=) (i i) )= om0

Cluster 2 includes action selections when the
variables selection dialog box is on the screen (steps 5
through 10). Conditions for these actiorexjuired
one proposition to beretrieved from long-term
memory. There were seven cue propositions. One of
them was the device goal, and the others six wees
from the display representation. The cues from the
display representation had a single very strtmig to

the device goal which reduced the probability #eath

cue retrieves the condition proposition. For example,
in step 5 (the action was “move pointer $er i al
Posi tion in the dialog box”), the retrieval
probability for the condition propositiomvere 1/59

(the devicegoal), 1/26, 1/67, 1/271/26, 1/26, and
1/29. The probability that none of thesmies
retrievesthe condition proposition wag8004, which

is the error probability for step 5 WithNgporation = 1-

Note that if connections to th#evice goal were not
magnified by the attention parameter, the error
probability becomes6130, which iscomparable to
the one for the Cluster 1.

Cluster 3 contains steps 11 and 12 for seledagh
title and double click it. Conditions for these actions
requiredone proposition to beetrieved from long-
term memory. The number of cues was seven. Two
of them were goals, and the otherswere from the
display representation. The cues from ttisplay
representatiomad adoublelink to the task goal and
the device goal. For step 11, thedrieval probability
for the condition propositiorwere 1/64 (the task
goal), 1/64 (thedevicegoal), 1/39, 1/79, 1/741/39,
and 1/42. The probability that none of thesaes
retrieves the condition proposition was.8747

( Nelaboration = 1)-

Cluster 4 is the step tgelectLi ne in the pull-down
menu (step 3).There werethree propositions to be
retrievedfrom long-term memory, the firstondition
could be retrieved byine cues, thesecond, by nine
cues,andthe thirdone, byone cue. Allcuescame
from the display and none of themadlinks to either
of goals. The probabilities of retrieval failure fesch
condition propositiorwere.5914, .5914,and .9167,
respectively, and overall error probability became

.9861 (Ngaporaiion =1). Step 3 wadlifficult because

of three conditions to beetrieved from long-term
memory.

5. CONCLUSIONS

The following five factors determined the error
probability for a given task context;

(1) the number of conditions to lbretrieved from
long-term memory,

the number of retrieval cues,

@
©)

the presence/absence of links to goals from the
cues in the display,

@)

the number of propositions thaach cue is
linked to (the fan effect),

©)

the number ofetrievalattempts using a@ive
cue.

Error probabilities for a particular step candelyzed
in terms of these factors. Figure 4 shows dffects
of factors, (1), (3), and (5).

Predictions oferror probabilities for a specific task
contextcalculated bythe formulaecould be used to
examine theplausibility of representationsised for
the task simulation. Remember that the
representations have already been tested for sufficiency
for producing correct actions. Even if a set of
representationswere proved to besufficient for
simulating correct task performance, it does not
necessarily mean that ittise correct set It might be
close to the correct, but we may find implausieteor
probability predictions, whicleould then beused to
improve the representations bgnsideringthe factors
that cause the deviation.

For example, theurrentset of actiorrepresentations
lead tothe predictionthat step 3 was mordifficult
than steps 1, 2and 4 because ofthe number of
conditions to beretrieved from long-term memory
was tripled. However, when user's action selections
are observed in EBboratory study, it wa$ound that
this step is notdifficult (Franzke, 1995). By
combining knowledge from laboratory study
concerning relative difficulty ofifferent actions and
the knowledge of the effect of the number of
conditions to beretrieved on erroprobabilities, we
will be able to improve action representations.

This analysis can also be used to examinevétielity
of the representations of goaladthe display. The

ICS-TR-95-01



presence/absence of goal related links fthen cues is
critical for discriminating the degree of error proneness
as shown in Figure 4. On the oiand, alarge
attentionparameter isessential to activate selectively
not only the correct actions but also thecorrect
candidateobjects. On the othehand, it reduces
significantly the probabilities for retrievingondition
proposition when its cues in the displanelinked to
the goals. Thiswould be used to improve the
representations of goals and display so thatribdel
could simulate not onlycorrectaction selections but
also correct error probabilities.

In conclusion, wederived aset of mathematical
formulae to calculaterror probabilities for a given
task context, which waderivedfrom the mechanism
of error generation in Kitajima and Polson’s (1994, in
press) model. Itprovided a coherent way to re-
examine the representations of taghkals, device
goals, display, long-term memory including actions,
that have been passdlle examination ofufficiency
test for producing correctactions, from another
measure of performancie. error probabilities. We
showed five factors that have effects onerror
probabilities, whichprovide appropriate directions for
improving therepresentations tharevalid not only
for simulating correct actions but alsoerroneous
actions.
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[ APPENDIX ] CRICKET-GRAPH TASK

The major task studied in osimulation experiments
involved preparing a grapthat matches an example,
shown in Figure A-1, using Crick&@raphl.3. We
briefly describethe taskand summarize themodel's
representation othe action sequencenecessary to
accomplishit. We assume that the user isshilled
user of Cricket Graplandthat he or she habeen
given thedata to beplotted in a CricketGraph
document entitled “Example Data.” Double-clicking
“Example Data” causesthe program to display a
spreadsheetvith three columns labeled “Observed,”
“Predicted,” and “Serial &sition.” Theuser’s task is
to plot “Observed” as dunction of “SerialPosition”
and then edit the resultingdefault graph so that it
conforms to Figure A-1.

The user’s firstsubtask, creating the default graph
“Observed” plotted as function of “SerialPosition,”
involves selecting‘Line-Graph” from the “Graph”
pull-down menu which brings up dialog box. The
dialog box enables the user tdesignatethe column
labeled “Serial Position” as the X-axis and the column
“Observed” aghe Y-axis. Clicking a buttonlabeled
“New Plot” causeghe defaultgraph to bepresented.
The secondmajor component of the task involves a
sequence oéditing operations thathange X-and Y-
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Figure A-1. The sample to loduced in the
Cricket Graph task.

axis ranges, the fonand size of X- and Y-axis,
legendstitle, andthe like. These editing operations
enablethe user to transform thdefault graphinto a
graph that matches the appearance of Figure A-1.

Table A-1 lists acorrect sequence @fctions with the
representations of task goal and device goals.

TABLE A-1
Step No. Task Goal§ G) and Device goald)G) Correct Action
Subtaskl TG-1: to create a defauline graphwith
Serial Position” as X axis versus “Observed” as Y axis
1 DG-11: to see entry into the line graghvironment Move Mouse Cursatio Gr aph
2 Press and Hold Mouse Button Down
3 Move Mouse Cursaio Li ne
4 Release Mouse Button
5 DG-12: to see Serial Position is selected aaxic Move Mouse Cursor to Seri al
Posi ti on in X axisselection list
6 SingleClick
7 DG-13: to see Observed is selected as Y axis Move MouseCursorto Observedin Y
axis selection list
8 SingleClick
9 DG-14: to see New-Plot is selected Move MouseCursorto New Pl ot
10 SingleClick
Subtask? TG-2: to edit the graphitle
11 DG-21: to see entry into the editirgnvironment Move MouseCursorto Graph-Titl e
12 Double Click

10
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