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ABSTRACT
The Kitajima and Polson model of display-based
human-computer interaction (1992, 1994, in press)
can make errors even if the model is provided with
sufficient knowledge to perform correct actions.  The
major cause of errors is the failure to retrieve from
long-term memory the knowledge necessary to select
a correct action.  This paper derives a set of
mathematical formulae that calculate the probability
of an error at a specific step in a task.  This technique
can replace a lengthy simulation runs that would be
required to obtain reliable error probabilities.  Each
step in an example graph-drawing task is analyzed
showing the factors that determine the likelihood of
an error.  

1. INTRODUCTION
Kitajima and Polson (1992, 1994, in press) have
proposed a comprehension-based, performance model
of skilled use of applications with graphical user
interfaces like those of the Apple Macintosh and
Microsoft Windows that accounts for both correct
performance and errors made by expert users.  The
model is based on Hutchins, Hollan and Norman’s
(1986) action theory, in which the user’s action
selection process is modeled as a cyclic process,
consisting of processes of (1) evaluating the current
display by using the current goals and knowledge
retrieved from long-term memory by a probabilistic
memory sampling process, (2) selecting a small

number of appropriate screen objects for a next action,
and (3) selecting an appropriate action on one of the
objects.  The selected object and action are the
outcome of a comprehension process applied to the
current display.  The model is an extension of the
Mannes and Kintsch (1991) model of action planning
which is based  on the Kintsch’s (1988) construction-
integration theory of text comprehension.  

In a set of simulation experiments reported in
Kitajima and Polson (1992, 1994, in press), we found
that the model makes errors even if it is provided with
correct goals and sufficient information in long-term
memory for selecting correct actions.  Errors are
caused by failures to retrieve critical information, such
as affordances of screen objects, from long-term
memory in the display evaluation process.  This kind
of error is called description error (Norman, 1981).
The Kitajima and Polson (1992, 1994, in press)
model simulates error rates of skilled users, in the
range of 10% ~ 15% (Card, Moran and Newell, 1983).  

In general, in order to obtain reliable error
probabilities of action selections in a given task
context, a large number of simulation runs would be
required, where the task context is defined by the
current goals, directly accessible knowledge in long-
term memory, i.e. long-term working memory
proposed by Ericsson and Kintsch (1995), and
information displayed on the screen.  However, we
found that, if some conditions were satisfied, we could
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replace such a lengthy simulation runs with a single
mathematical calculation because of the model’s
underlying mechanism of error generation.  

The purpose of this paper is to provide a derivation of
the mathematical formulae to calculate error
probabilities of action selections for a given task
context.  The next section gives a brief introduction
to the Kitajima and Polson’s model of action
selection in display-based HCI, followed by a section
describing mathematical derivation of the formulae.
Finally, a graph drawing task is analyzed showing
how error probabilities vary with the
interrelationships of the knowledge necessary for
action selections.  

2.  THE MODEL OF DISPLAY-BASED HCI
Figure 1 illustrates the model.  The model is based on
Hutchins, Holland, and Norman’s (1986) action

theory framework, consisting of the following four
basic components:  

(1) goals representing what the user wants to
accomplish, which are a schematic outline of
the action sequence that will accomplish the
task,  

(2) a task environment which is the world that
reacts to the user’s actions and generates new
responses by modifying the display,

(3) the stage of evaluation, comprised of the
processes that evaluate and interpret the
display, and,

(4) the stage of execution, comprised of the
processes that select and execute actions that
affect the world.  

World
(Task Environment)

Action C ycle

Stage of EvaluationStage of Execution

Task Goals
Device Goals

Generating Display 
Representations

Elaborating the DisplaySelecting Candidate 
Objects for Next Action

Selecting Action

Figure 1. The comprehension-based, performance model of display-based HCI (Kitajima and Polson, in
press), based on Hutchins, Hollan, & Norman’s (1986) action cycle theory framework.  
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The Kitajima and Polson’s model incorporates goals,
two processes for the stage of evaluation and two for
the stage of execution.  

2.1  Task Goal and Device Goa l

The model assumes that skilled users have a
schematic representation of the task that is in the
form of a hierarchical structure involving two kinds of
goals: task goals and device goals. Our goal
representation is taken directly from the Yoked State
Space Hypothesis proposed by Payne, Squibb, and
Howes (1990).  Payne, et al. assume that discovering
how to carry out a task involves searching of two
problem spaces.  The first is a space of possible task
states.  The second is a space of possible device states
that are required to achieve a given task state.  We
assume that each task goal is associated with one or
more device goals.  The associated device goals
specify device states that must be achieved in order to
satisfy the task goal.  

Given a task goal and its associated device goals, the
model simulates a sequence of action selections as
follows.  

2.2  Stage of Evaluat ion  

2.2.1  Generating Display Representations  

At first, the model generates a representation of the
display.  The display representation only includes
information about identity of each object on the
display and its appearance, e.g. highlighted, pointed-
at, dragged, etc.  No information about what actions
can be taken on an object, or its meaning and
relationships to other objects in the display is
included in this initial display representation.  

2.2.2  Elaborating the Display

All such information is generated by the elaboration
process which retrieves information from long-term
memory by a random sampling process. The retrieval
cues are the representations of the current display, the
task goal and the device goals.  The probability that
each cue retrieves particular information in a single
memory retrieval process is proportional to the
strength of the link between them.  The model
performs multiple retrieval attempts during the
elaboration process.  A parameter, the elaboration
parameter, Nelabotation , controls the number of times

each element of the display and goal representations is
used as retrieval cues1.  

The random sampling process is taken from Kintsch’s
(1988) construction-integration model.  Kintsch used
the Raaijmaker and Shiffrin’s (1981) model to
simulate the process of retrieving information from
long-term memory for incorporation into the network.
Kintsch assumed that the propositional representation
of a sentence momentarily activates the meanings of
words and other related information in long-term
memory.  This knowledge is incorporated in the
network during the construction phase.  Kintsch and
Mross (1985) present evidence in favor of these
assumptions.  

The retrieved information elaborates the display
representation, providing information about
interrelationships between screen objects,
relationships between the task and device goals and
screen objects, and other attributes of screen objects.
The elaborated display representation is model’s
evaluation of the current display in the current task
context.  

2.3  Stage of Execut ion

In simulation of the stage of execution, the model
selects three candidate screen objects and then selects
an action-object pair.  Each of these selection
processes involves two phases: construction of a
network of propositions, in which the network is
linked up by the argument overlap mechanism2, a
principle from the Kintsch and van Dijk’s (1978)
model of text comprehension, followed by integration
of the network in which an iterative, spreading
activation mechanism is used to make the selection.

                                                
1The model represents goals and display in
propositions, like OBJECT12 is-on-screen .  In the
memory sampling process, the argument, such as
OBJECT12, is used to retrieve information from long-term
memory that has OBJECT12 as its argument.  

2It is assumed that, when two propositions in the
network share one argument, they are connected by a link
of strength, the argument overlap weight.  When they
share N  arguments, the strength is multiplied by N. For
example, the two propositions, OBJECT12 is-on-
screen , and OBJECT12 has C ALCULATOR-MENU-I TEM, are
linked by the shared argument, OBJECT12, and given one
unit of the argument overlap weight for the link strength.  
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2.3.1  Selecting Candidate Objects for Next Action  

At first, the model limits its attention to a few
number of screen objects out of ~100 objects
displayed on the screen.  The selected screen objects
are candidates for the next action to be operated upon.
The selection of candidate objects is performed in a
network which is incorporating nodes representing the
goals, the evaluation of the current display, and the
candidate object nodes, one for each screen object.  

The object selection process is dominated by two
factors.  The first factor is the strength of attention to
the goals.  The model assumes that strong attention
characterizes expert behavior, that is, rapid and correct
action selections (Kitajima and Polson, 1992, 1994).
The model simulates the attention mechanism by a
mechanism that reinforces the links between the goals
and the other propositions.  These special links are
multiplied by the attention parameter.  Large values
of the attention parameter are required for the model to
simulate expert behavior.  The second is the number
of propositions that are necessary to bridge the goals
and the candidate objects.  Note that the spreading
activation mechanism can only activate significantly
the nodes that are less than two links away from the
goals3.  The greater the attention parameter and the

                                                
3 The nodes representing the current task goal, the
current device goal, and the screen objects serve as

less the number of bridging propositions, the more
activation flows to goal related propositions.  

2.3.2  Selecting Action  

The model considers all possible actions on each
candidate object.  The model incorporates 18 possible
actions4, such as “moving the mouse cursor to a
menu item in order to display a pull-down menu.”
The selection of next action is performed in a network
which is constructed by nodes representing the
evaluation of the current display and all possible
object-action pairs.  The result of the activation
process is dominated by the same two factors
described above.  

The action representations include conditions to be
satisfied for their execution.  The conditions are
matched against the elaborated display representations.
Some conditions are satisfied by the current screen,
others by information that was retrieved from long-
term memory in the elaboration process.  For
example, the model cannot select an action to double
click a document icon for editing unless both of the
following conditions are available in the elaborated
display representations.  The first is a screen
condition, “the icon is currently pointed at by the
mouse cursor”, and the other is the information that
“the icon can be double clicked.”  Observe that if
information about a necessary condition is missing
from an elaborated display representation, the model
cannot perform that action on the incorrectly described
object.  

Figure 2 shows an example of action representations
from our experiments, in which a graph drawing task
using Cricket Graph, a Macintosh application, was
simulated.  The task description and a sequence of
actions necessary for accomplishing the task are
shown in the Appendix.  Figure 2 illustrates the

                                                                         
activation sources.  In the integration process, unit
activation values allocated to the activation sources flow
to the rest of the network.  Due to a large value of the
attention parameter, the goals become strong sources of
activation.  

4Representations of actions define different functions of
single physical actions in many different contexts.  For
simulating the Cricket Graph task, the model defines
eighteen cognitive actions on six physical actions;
Move-Mouse-Cursor, Single-Click, Double-Click, Hold-
Mouse-Button-Down, Release-Mouse-Button, and Type.  

NAME:

Point-at GRAPH in M ENU-B AR with
ARROW-S HAPED-C URSOR

CONDITION: IF

GRAPH is-on-screen
GRAPH is-not-grabbed
GRAPH is-not T EXT-OBJECT C-11
POINTER-S HAPE is A RROW

POINTER-S HAPE is-not I-B EAM

ACTION:

GRAPH is-pointed-at
GRAPH is-on-screen
GRAPH is-not-grabbed
POINTER-S HAPE is A RROW

POINTER-S HAPE is-not I-B EAM

Figure 2.  Action representation for pointing
at Graph menu.  The condition, C-11, must
be retrieved from long-term memory in order
for this action to be executed.  
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action representation for pointing at Graph menu,
which is the first step for the task.  There are six
conditions to be satisfied for its execution; the third
one, GRAPH is-not  TEXT-OBJECT, has to be
retrieved from long-term memory, whereas the others
are satisfied by the current screen.  Action
representations for eleven steps out of twelve for the
Cricket Graph task, had only one condition to be
retrieved from long-term memory, like this step.  

3.  ERROR PROBABILITY  
3.1  Error Generation Mechanism

There are three ways the model can make errors.  The
first is that the process of selecting candidate objects
for the next action fails to include the correct object
on the list of candidate objects, because the node
representing the correct object was not activated high
enough to be selected as one of candidates.  The
second is that the correct action fails to become the
highest activated action among executable actions
through the spreading activation process.  In the
model’s terms, these kinds of errors can be ascribed to
missing bridging knowledge that had to be retrieved
from long-term memory during the elaboration
process.

The third is that the elaboration process fails to
incorporate all of the necessary conditions for the
correct action in the elaborated display representation.
Low values of the elaboration parameter can cause
this error.  Parameter values in the range of 12 to 20
caused the model to simulate error rates in the range
of 10% to 20% (Kitajima and Polson, 1994, in
press).  We argue that the elaboration parameter
describes a speed-accuracy tradeoff process where low
values of the parameter reduce the amount of time
taken by the elaboration process.  

3.2  Mathematical Calculation of Error
Probabil i ty

The probabilities of errors generated by the third cause
can be calculated mathematically when a task context
for action selections is specified.  We derive the
formulae starting with a detailed explanation of the
mechanism of memory sampling process.

The retrieval process model was first described by
Raaijmaker and Shiffrin (1981).  In the elaboration
process of our model, each element (argument) in each
proposition, representing a goal or screen object,

serves as a retrieval cue for propositions stored in
long-term memory.  Each argument in the cue
propositions is used as the retrieval cue Nelaboration

times.  

The retrieval probabilities are defined as follows.  Let
Cn (1 ≤ n ≤ N )  be the n-th condition to be retrieved

from long-term memory for an action to be
executable, where N  is the number of such
conditions. And let Xn,i  (1 ≤ i ≤ Mn )  be the i-th

retrieval cue for Cn .  Xn,i , representing either the

current task goal, the device goal, or one of the
current screen objects, shares at least one argument
with Cn .  Mn is the number of such propositions

from these retrieval cues.  In the Cricket Graph task,
Mn was around seven; N  was three for the third step

which is to select Line in the pull-down menu and
one for the other eleven steps.  The probability that
proposition Xn,i  will retrieve proposition Cn ,

P(Cn | Xn,i ), is given by the following formula;  

P(Cn | Xn,i ) =
WXn,i ,Cn

WXn,i , Xj
Xj ∈ all propositions but Xn,i{ }

∑
,  (1)

where WXn,i , Xj
≥ 0  is the strength between

proposition nodes Xn,i  and X j , which is defined by

the argument overlap weight, W , and the attention
parameter, F .  

Figure 3 illustrates interconnections among various
components of the network.  Each retrieval cue, Xn,i ,

is connected with propositions in long-term memory,
and among themselves.  The numbers in parentheses
are typical link strengths used in the simulation
experiments, assuming one overlapping argument
between two interconnected propositions.  As the
result of very strong attention parameter values,
F = 16 , the goal related links, if they exist, have a
tremendous effect on the results of memory sampling
process.  Namely, a display representation, if
connected with a goal, cannot be a promising retrieval
cue for a condition in long-term memory because
most of its effort for memory sampling is absorbed
by the strong link to the goal.  In the simulation of
the Cricket Graph task, P(Cn | Xn,i ) ranged from 0.01

to 0.1.  
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Next, we focus on an event, Rn , in which Cn  is

retrieved from long-term memory by one or more
retrieval cues and in one or more retrieval attempts.
Since these events are independent from each other,
the probability of selecting a correct action by
retrieving all the conditions is calculated by the
following formula;  

P Correct Action P Error

P R P R P Rn N

( ) ( )

( ) ( ) ( )

 

             

= −
= × … × × … ×

1

1 (2)

where P(Rn )  is the probability that the event Rn

occurs.  

Since the event Rn  can happen when at least one of

Mn cues successfully retrieves Cn , its probability is

calculated as follows;  

P(Rn ) = 1 − (1 − Pi (Rn ))
i=1

Mn

∏ , (3)

where Pi (Rn ) is the probability that i -th cue, Xn,i ,

causes the event Rn .  Since Xn,i  is used as a retrieval

cue Nelaboration times and the probability that a single

memory sampling trial successfully retrieves Cn  is

given by (1), Pi (Rn ) can be represented as follows;  

Pi (Rn ) = 1 − (1 − P(Cn | Xn,i ))
Nelaboration .  (4)

In summary, error probability for an action selection
can be calculated by (2) when the strengths of links in
the network for the task is specified.  The probability
distribution is defined by (1) when both the
representations of the task goal, the device goals, the
display, and long-term memory, and the value of
attention parameter are specified.  Note that the
strength of argument overlap parameter, W , has no
effect on the probability distribution.

4.  CALCULATION OF ERROR
PROBABILITIES FOR THE CRICKET GRAPH
TASK
These formulae can be used to calculate error
probabilities when we could expect errors only due to
failure of retrieval of necessary conditions for the
correct action.  We found that this condition was
satisfied in the simulation experiments we reported in
detail in Kitajima and Polson (in press).  They
conducted 50 simulation runs for twelve steps of the
Cricket Graph task with five elaboration parameter
values; 3,000 action selections were performed in
total.  See the Appendix for the task description and
the simulated sequence of actions.  They obtained 396
errors, all of which except for one were due to
missing conditions, namely, action slips.  

Figure 4 shows error probabilities for the Cricket
Graph task calculated by applying these formulae,
which provides statistically more reliable error
probabilities for the simulated situations than the
experimentally obtained values from 3,000 simulation
runs.  By observing the figure, we can group the
curves into four clusters.  Each cluster is different
from the others in terms of the degree of error

task-goal device-goal display LTM

task-
goal (1)

F2 × W
(1024)

F × W
(64)

F × W
(64)

device-
goal

F2 × W
(1024) (1)

F × W
(64)

F × W
(64)

display F × W
(64)

F × W
(64)

W
(4)

W
(4)

LTM F × W
(64)

F × W
(64)

W
(4)

W
(4)

Figure 3.  Interconnection among goals, display,
and long-term memory.  The numbers in
parentheses are link strengths used in the
simulation, being the attention parameter F  is
set to 16, and the argument overlap weight, W ,
set to 4, and assuming one overlapping
argument between two components.  

Table 1.  The retrieval cues for the first step of the
Cricket Graph task and the number of links from each
cue.  

Cues in the Display Representations
number
of links

GRAPH is-on-screen 12

GRAPH isa S CREEN-OBJECT 45

GRAPH isa G RAPH-MENU-I TEM 14

GRAPH is-equal-to THE- GRAPH- TO-
BE- POINTED- AT

15

GRAPH is-not-highlighted 12

GRAPH is-not-selected 12

GRAPH is-not-grabbed 12
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proneness.  In the following, the causes of differences
between clusters are examined.  

Cluster 1 is defined by action selections at steps 1, 2
and 4.  Conditions for these actions consisted one
proposition to be retrieved from long-term memory.
None of the cues for the condition proposition was
linked to a goal proposition.  For example, step 1
requires the condition C-11 shown in Figure 2 for its
execution which could be retrieved from seven cues in
the display representations as shown in Table 1.  Each
cue was connected to propositions representing the
display and those stored in long-term memory.  The
arguments, shown in small cap letters in Table 1, are

used to establish linkages between them by the
argument overlap mechanism.  In Figure 3, two cells
connecting display and, display or LTM, are relevant
here.  Since the model provides equal strength, W, to
each link the retrieval probability of C-11 for each cue
is calculated by inverting the number of links shown
in the right column of Table 1 (see equation (1)).  The
probability that none of these cues retrieves the
condition proposition for Nelaboration = 1 is given as

follows;  

2 82 42 01 61 28400
0.0
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Cluster 4 (step 3)
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Cluster 2 (step 5 - 9)

Cluster 1 (step 1, 2, 4)

Figure 4.  Error probabilities for each step in the Cricket Graph task as a function of the elaboration parameter.  
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P(Error(step1))

= 1 − P(R11;C − 11 is retrieved from LTM)

= 1− 1

12( )4
× 1− 1

14( ) × 1− 1

15( ) × 1− 1

45( ) =.5983

Cluster 2 includes action selections when the
variables selection dialog box is on the screen (steps 5
through 10).  Conditions for these actions required
one proposition to be retrieved from long-term
memory.  There were seven cue propositions.  One of
them was the device goal, and the others six cues were
from the display representation.  The cues from the
display representation had a single very strong link to
the device goal which reduced the probability that each
cue retrieves the condition proposition.  For example,
in step 5 (the action was “move pointer to Serial
Position in the dialog box”), the retrieval
probability for the condition proposition were 1/59
(the device goal), 1/26, 1/67, 1/27, 1/26, 1/26, and
1/29.  The probability that none of these cues
retrieves the condition proposition was .8004, which
is the error probability for step 5 with Nelaboration = 1.

Note that if connections to the device goal were not
magnified by the attention parameter, the error
probability becomes .6130, which is comparable to
the one for the Cluster 1.  

Cluster 3 contains steps 11 and 12 for selecting graph
title and double click it.  Conditions for these actions
required one proposition to be retrieved from long-
term memory.  The number of cues was seven.  Two
of them were goals, and the others were from the
display representation.  The cues from the display
representation had a double link to the task goal and
the device goal.  For step 11, the retrieval probability
for the condition proposition were 1/64 (the task
goal), 1/64 (the device goal), 1/39, 1/79, 1/74, 1/39,
and 1/42.  The probability that none of these cues
retrieves the condition proposition was .8747
( Nelaboration = 1).  

Cluster 4 is the step to select Line in the pull-down
menu (step 3).  There were three propositions to be
retrieved from long-term memory, the first condition
could be retrieved by nine cues, the second, by nine
cues, and the third one, by one cue.  All cues came
from the display and none of them had links to either
of goals.  The probabilities of retrieval failure for each
condition proposition were .5914, .5914, and .9167,
respectively, and overall error probability became

.9861 (Nelaboration = 1).  Step 3 was difficult because

of three conditions to be retrieved from long-term
memory.  

5.  CONCLUSIONS  
The following five factors determined the error
probability for a given task context;

(1) the number of conditions to be retrieved from
long-term memory,

(2) the number of retrieval cues,

(3) the presence/absence of links to goals from the
cues in the display,

(4) the number of propositions that each cue is
linked to (the fan effect),

(5) the number of retrieval attempts using a give
cue.  

Error probabilities for a particular step can be analyzed
in terms of these factors.  Figure 4 shows the effects
of factors, (1), (3), and (5).

Predictions of error probabilities for a specific task
context calculated by the formulae could be used to
examine the plausibility of representations used for
the task simulation.  Remember that the
representations have already been tested for sufficiency
for producing correct actions.  Even if a set of
representations were proved to be sufficient for
simulating correct task performance, it does not
necessarily mean that it is the correct set.  It might be
close to the correct, but we may find implausible error
probability predictions, which could then be used to
improve the representations by considering the factors
that cause the deviation.  

For example, the current set of action representations
lead to the prediction that step 3 was more difficult
than steps 1, 2 and 4 because of the number of
conditions to be retrieved from long-term memory
was tripled.  However, when user’s action selections
are observed in a laboratory study, it was found that
this step is not difficult (Franzke, 1995).  By
combining knowledge from laboratory study
concerning relative difficulty of different actions and
the knowledge of the effect of the number of
conditions to be retrieved on error probabilities, we
will be able to improve action representations.  

This analysis can also be used to examine the validity
of the representations of goals and the display.  The
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presence/absence of goal related links from the cues is
critical for discriminating the degree of error proneness
as shown in Figure 4.  On the one hand, a large
attention parameter is essential to activate selectively
not only the correct actions but also the correct
candidate objects.  On the other hand, it reduces
significantly the probabilities for retrieving condition
proposition when its cues in the display are linked to
the goals.  This would be used to improve the
representations of goals and display so that the model
could simulate not only correct action selections but
also correct error probabilities.  

In conclusion, we derived a set of mathematical
formulae to calculate error probabilities for a given
task context, which was derived from the mechanism
of error generation in Kitajima and Polson’s (1994, in
press) model.  It provided a coherent way to re-
examine the representations of task goals, device
goals, display, long-term memory including actions,
that have been passed the examination of sufficiency
test for producing correct actions, from another
measure of performance, i.e. error probabilities.  We
showed five factors that have effects on error
probabilities, which provide appropriate directions for
improving the representations that are valid not only
for simulating correct actions but also erroneous
actions.  
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 [  APPENDIX  ]  CRICKET-GRAPH TASK
The major task studied in our simulation experiments
involved preparing a graph that matches an example,
shown in Figure A-1, using Cricket Graph 1.3.  We
briefly describe the task and summarize the model’s
representation of the action sequence necessary to
accomplish it.  We assume that the user is a skilled
user of Cricket Graph and that he or she has been
given the data to be plotted in a Cricket Graph
document entitled “Example Data.”  Double-clicking
“Example Data” causes the program to display a
spreadsheet with three columns labeled “Observed,”
“Predicted,” and “Serial Position.”  The user’s task is
to plot “Observed” as a function of “Serial Position”
and then edit the resulting default graph so that it
conforms to Figure A-1.  

The user’s first subtask, creating the default graph
“Observed” plotted as a function of “Serial Position,”
involves selecting “Line-Graph” from the “Graph”
pull-down menu which brings up a dialog box.  The
dialog box enables the user to designate the column
labeled “Serial Position” as the X-axis and the column
“Observed” as the Y-axis.  Clicking a button labeled
“New Plot” causes the default graph to be presented.
The second major component of the task involves a
sequence of editing operations that change X- and Y-

axis ranges, the font and size of X- and Y-axis,
legends, title, and the like.  These editing operations
enable the user to transform the default graph into a
graph that matches the appearance of Figure A-1.  

Table A-1 lists a correct sequence of actions with the
representations of task goal and device goals.  
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Figure A-1.  The sample to be produced in the
Cricket Graph task.  

TABLE A-1

Step No. Task Goals (TG) and Device goals (DG) Correct Action
Subtask       1      TG-1: to create a default line graph with
Serial Position” as X axis versus “Observed” as Y axis

1 DG-11: to see entry into the line graph environment Move Mouse Cursor to Graph
2 Press and Hold Mouse Button Down
3 Move Mouse Cursor to Line
4 Release Mouse Button
5 DG-12: to see Serial Position is selected as X axis Move Mouse Cursor to Serial

Position in X axis selection list
6 Single Click
7 DG-13: to see Observed is selected as Y axis Move Mouse Cursor to Observed in Y

axis selection list
8 Single Click
9 DG-14: to see New-Plot is selected Move Mouse Cursor to New Plot
10 Single Click

Subtask       2     TG-2:  to edit the graph title

11 DG-21: to see entry into the editing environment Move Mouse Cursor to Graph-Title
12 Double Click


