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Abstract

This paper describes LICAI, a model that simulates peforming tasks by exploration
where the tasks are given to the user in the form of written exercises that contain no
information about the correct action sequences. LICAI’s comprehension processes and
the action planning processes are based on Kintsch’s construction–integration theory
for text comprehension. The model comprehends the instructions and generates goals
which are then stored in memory.  The action planning process is controled by goals
retrieved from memory cued by displays generated by the application.

The model assumes that the instruction comprehension is a strategic process;
instruction texts must be elaborated using specialized strategies that guide generation of
goals.  Representations of goals that lead to correct actions are restricted by the
construction–integration architecture.  The model predicts that successful exploration
requires perfect matching of goal representation and the label on the correct object.
The model is evaluated by comparing predictions with the results from a laboratory
study.  Finally, implications to designing instruction materials and interface displays
that facilitate exploration are discussed.
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1. Introduction

The major focus of recent research on skill acquisition in human–computer interaction has been on
learning by exploration (Carroll, 1990; Howes, 1994; Rieman, 1994, in press; Rieman, Young, &
Howes, in press).  Experienced users of a given environment (e.g., Macintosh or Windows95)
learn new applications or extend their knowledge of applications they already use by task-oriented
exploration.  Formal training is rarely available, and there are usability problems with training and
reference documentation (e.g., Compeau, Olfman, Sein, & Webster, 1995).  Most users prefer to
acquire new skills by exploration; they perform new tasks relevant to their work (Carroll, 1990).

A majority of current models of exploration are based on problem solving architectures like SOAR
(Newell, 1990; Rieman et al., in press) or ACT-R (Anderson, 1993; Rieman, 1994; Rieman,
Lewis, Young, & Polson, 1994).  Many of these models attempt to account for the label following
strategy (Engelbeck, 1986; Polson & Lewis, 1990; Franzke, 1994, 1995), which is one of the
most frequently used problem solving heuristics by users at all levels of expertise.  Label following
involves using the overlap between users’ goals and labels on menus, buttons, and other interface
objects to guide search during exploration.  Interface objects with overlapping labels are acted on
(e.g., dropping a menu) in attempts to discover a correct action sequence.

Previous models of the label following strategy have taken goals as given and then described the
resulting search behavior (e.g., Rieman et al., in press).  However, models of exploration should
go a step further and define the processes that generate the goals that determine exploratory
behavior.  Normally, tasks are given to users through various forms: narratives, written instruction
texts, help messages, graphics images, or combinations of these forms.  Whatever forms are used
to specify the task, the user must comprehend the meaning of an initial task description and then
formulate goals that guide interaction with the interface.

The LICAI1 model described in this paper focuses on goal formation. The model is based on the
construction–integration architecture originally developed to account for comprehension and
memory for texts.  This architecture has been extended to account for action planning (Mannes &
Kintsch, 1991), skilled display-based, human–computer interaction (Kitajima & Polson, 1995),
and word problem solving (Kintsch, 1988).  The LICAI model simulates an experimental paradigm
used by Franzke (1994, 1995) in which experienced Macintosh users are introduced to a new
application by performing a series of exercises described in written instructions by exploration.
Comprehending instructions to form effective goals for exercises is critical for successful
performance in Franzke’s paradigm.  Our approach is complementary to that of Rieman et al.  (in
press).  The LICAI model accounts for Franzke’s (1994) data by attributing users’ likelihood of
success on a given exercise to the difficulty of formulating the correct goal required by the model’s
action planning process.

This paper is an extended version of Kitajima and Polson (1996) and includes new simulation
results. These results show that the comprehension-based goal formation processes can generate
the goals required by Kitajima and Polson’s (1995) action planning model.

                                                

1 LICAI is acronym for the LI nked model of Comprehension-based Action planning and Instruction taking.  When LICAI
is pronounced like “lick eye” or “Lee CHI (χ)”, the pronunciation represents two-kanji character Japanese word, ,
which means comprehension.
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1.1 Outline of the LICAI Model

The LICAI model combines specialized text comprehension processes that generate goals while
reading task instructions with Kitajima and Polson’s (1995) action planning model.  The output of
the instruction comprehension processes are goals that control the action generation processes.  The
comprehension processes use specialized strategies to transform written instructions into goals
(Kintsch, 1988; Kintsch & Greeno, 1985).  We propose comprehension strategies in the form of
schemata that transform information contained in the text into goals that control the action planning
processes.  Schemata are specialized knowledge structures whose slots are filled with crucial
elements extracted from the instructions or elements generated by other schemata that elaborate the
original instructions.

1.1.1 The Construction–Integration Architecture
The goal formation processes and the action planning processes in the LICAI model are derived
from Kintsch’s (1988) construction–integration theory of text comprehension.  The goal formation
processes are based on the work of Kintsch and collaborators’ work on word problems (Kintsch,
1988; Kintsch & Greeno, 1985).  The action planning model (Kitajima & Polson, 1995) is a
generalization of the Mannes and Kintsch (1991) extension of the construction–integration theory to
action planning.  The goal formation processes and the action planning processes are combined to
describe the behavior of experienced Macintosh users exploring a new application.

The construction–integration theory is not a complete cognitive architecture (e.g., SOAR; see
Newell, 1990, or ACT-R; see Anderson, 1993), although Wharton and Kintsch (1991) outlined
how the theory could be extended.  In particular, the theory does not incorporate explicit
mechanisms for learning and problem solving.  The action planning models (Kitajima & Polson,
1995; Mannes & Kintsch, 1991) contain the elements of a problem solving architecture including
goals, selection between alternative actions, and the ability to react to the consequences of actions.
Alternative analyses of exploration in human–computer interaction are based on problem solving
architectures (e.g., Rieman et al., in press).  Our goal is to show that a comprehension-based
analysis of goal formation provides a compelling alternative account of exploration.

1.1.2 Franzke’s (1994, 1995) Experimental Paradigm
The LICAI model simulates an experimental paradigm used by Franzke (1994, 1995).  Franzke had
experienced Macintosh users do two versions of a graphing task using one of three different
graphing applications with which they had no prior experience.  The graphing task was presented
to users as a series of exercises.  The instructions for each exercise contained no information about
the action sequences required to complete each subtask.  Franzke’s (1995) experimental task is
similar to actual use of a novel application.  Users formulated tasks for themselves or were given
written specifications for a task.

Our theoretical analysis of Franzke’s (1995) results refines and extends her analyses, which were
based on the model of exploration (Polson & Lewis, 1990) underlying the Cognitive Walkthrough
(Polson, Lewis, Rieman, & Wharton, 1992; Wharton, Rieman, Lewis, & Polson, 1994).
However, the LICAI model does not incorporate search mechanisms.  Our simulation accounts for
the initial success or failure of the goal formation and selection processes.  There are strong
constraints on the exact form of a goal that will cause the action planning processes to generate the
correct action sequence for an exercise.  Participants can generate the necessary goals by combining
information contained in the task instruction for an exercise with elaborations of the text generated
by specialized comprehension schemata.  Thus, the LICAI model partitions the exercises given to
Franzke’s participants into (1) tasks that can be done with little or no trial-and-error search and (2)
those tasks that the model cannot perform because it cannot generate a successful task goal from the
instructions.
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1.2 Outline of the Paper

We begin by describing the construction–integration theory of text comprehension.  Next, we
summarize research on models of word problem solving developed by Kintsch and collaborators.
The LICAI model is an extension of Kintsch and Greeno’s (1985) theory of arithmetic word
problem solving.  We then describe Kintsch and Welsch’s (1991) model of memory for text.
Kitajima and Polson’s (1995) action planning model of skilled, display-based human–computer
interaction is presented in the next section.

We then describe our comprehension-based model of goal formation that maps an initial description
of a task onto the specific goals required by Kitajima and Polson’s (1995) action generation process
and report the results of a simulation experiment evaluating the model.  The LICAI model stores
multiple possible task goals in episodic memory and uses cues from displays generated by the
application to retrieve the task goals that guide action planning.  We evaluate the LICAI model
using Franzke’s (1995) results.  We then review recent models of exploration in human–computer
interaction in light of our results.  Finally, we summarize the implications of our results for
practice.  These results have importation implications for the design of interfaces and training
materials that support exploration (Carroll, 1990; Wharton et al. 1994).

2. Construction–Integration Theory of Word Problem Solving and
Memory for Text

2.1 The Construction –Integration Framework

Kintsch (1988) proposed a model of comprehension that combines elements of symbolic and
connectionist models of cognitive processes.  Text comprehension is a cyclic process where readers
process a sentence, or a major constituent of a long sentence, during a single cycle; reading a text
involves a sequence of such cycles (Kintsch & van Dijk, 1978).

The construction–integration cycle is a two-phase process.  In the first phase, a network of
propositions is created that contains possible alternative meanings of the current sentence or
fragment.  This construction process generates an associative network whose nodes are
propositions representing the input text, elaborations of the input text retrieved from long-term
memory, and propositions carried over from the last cycle.  The elaborations come from two
sources.  The first is propositions retrieved from long-term memory by a stochastic, associative
retrieval process (Raaijmakers & Shiffrin, 1981).  The second are inferences generated by schemata
triggered by propositions in the original input text.  Construction is a bottom-up process that is not
guided by context.  Thus, at the end of the construction process the model has multiple possible
meanings for the input text.  The integration process, the second phase, selects an interpretation of
the input sentence consistent with the current context and the reader’s goals.  The integration
process is connectionist in nature and uses a spreading activation mechanism.  The most highly
activated nodes in the network represent the reader’s interpretation.

2.2 Kintsch’s (1988) Model of Word Problem Solving

The model of goal formation processes in the LICAI model is taken directly from Kintsch’s (1988)
version of Kintsch and Greeno’s (1985) model of word arithmetic problem solving and related
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work by Kintsch and associates (Cummins, Kintsch, Reusser, & Weimer, 1988; Delarosa, 1986;
Fletcher, 1985).  Kintsch has incorporated assumptions about representation and strategic
processes originally developed by van Dijk and Kintsch (1983) into the construction–integration
theory.  These assumptions are central to Kintsch and Greeno’s (1985) model of word arithmetic
problem solving.

Van Dijk and Kintsch (1983) assumed that text comprehension generates multiple representations,
the most important of which are the text base and the situation model.  The text base is the semantic
representation of a text describing a problem or instructions to perform a task.  The situation model
is a representation of the problem or task generated by the comprehension processes.  The other
key assumption made by van Dijk and Kintsch (1983) is that reading is a strategic process.
Different kinds of text comprehension processes are involved in reading a narrative text.  These
strategies generate the inferences that are required to construct a situation model.  The knowledge
used by the strategies is represented as comprehension schemata.

In Kintsch and Greeno’s (1985) model of word arithmetic problem solving, the arithmetic
strategies take the text that describes the word problem and transform it into a situation model (i.e.,
problem model) representing the problem as sets of objects and their interrelationships.  The
problem model is operated on by appropriate problem solving mechanisms (arithmetic, algebra, or
action planning) to generate a solution to the problem described in the text.

Kintsch (1988) incorporated the comprehension schemata needed to solve word problems into the
construction–integration model by assuming that the arithmetic strategies operate during the
construction phase.  For example, an arithmetic schema is used to identify noun phrases as sets.
Propositions are added to the network specifying alternative hypotheses about the role of each set in
the problem (part-set, whole-set).  Representations of all possible problem models consistent with
the various roles are incorporated into the network.  The alternative interpretations are linked to
other components of the network, including information about time order of possession, location,
and other aspects of the situation described in the text.  The integration process then selects the
most highly activated problem model.  This problem model is an explicit arithmetic problem.  When
the problem model is solved by appropriate arithmetic procedures, the result is the answer to the
word problem.

The critical difference between the Kintsch and Greeno (1985) and Kintsch (1988) versions of the
arithmetic word problem models is that the control processes in the Kintsch and Greeno model
generate a single problem model from the text.  Kintsch (1988) argued that incorporating such
“smart” rules is not a viable model of comprehension because such rules turn out to be too brittle.
The Kintsch (1988) model of arithmetic word problem solving and the model of goal formation
processes incorporated in the LICAI model generate multiple problem models.

2.3  Memory for Text

The LICAI model simulates a user who reads a short paragraph of task instructions and then
attempts to perform the task by exploration.  The model assumes that multiple goals, generated
during reading the instructions, are stored in episodic memory along with the text base for the
instructions.  The goals are retrieved from memory by cues from displays generated by the
application.  The retrieved goals control the action planning process generating the exploratory
behavior.

The LICAI model uses Kintsch and Welsch’s (1991) model of memory for text.  Their model
processes each sentence during a single construction–integration cycle.  After each cycle, the active
nodes in the integrated network are transferred to a network representing an episodic memory trace.
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The episodic memory trace accumulates the results of comprehension of each sentence.

The episodic memory trace is represented as a square matrix M .  The rows and columns are all of
the unique propositions generated during the sequence of construction–integration cycles required
to process the text.  The diagonal values of M  represent the strength of the propositions in episodic
memory.  The off-diagonal values greater than zero are the strengths of the links between
propositions that share one or more arguments.

Consider a proposition whose index in M equals i.  Let a be the final activation value of the
proposition and s be the self strength of the proposition in the constructed network.  The new value
of mii  equals the old value plus sa2.  Let a’ be the final activation value of another proposition in the
current cycle whose index in M equals j, and let sij be the strength of the link in the constructed
network between this proposition and the proposition with index i.  The new value of mij equals the
old value plus sijaa’.  During the  retrieval process, M  is linked to nodes representing the retrieval
cues.  The resulting network is then integrated with the retrieval cues serving sources of activation.
Kintsch and Welsch (1991) show that the activation value of each node in M  correlates with the
speed of recall of that node.

3. Action Planning Model of Display-Based Human–Computer
Interaction

The LICAI model is an extension of Kitajima and Polson’s (1995) model of action planning in
display-based human–computer interaction.  It is based on an extension of the
construction–integration architecture to action planning (Mannes & Kintsch, 1991).

3.1 Task and Device Goals

Kitajima and Polson’s (1995) action planning model assumes that skilled users have a schematic
representation of the task in the form of a hierarchical structure involving two kinds of goals: task
goals and device goals (Payne, Squibb, & Howes, 1990).  Kitajima and Polson assumed that each
task goal is associated with one or more device goals.  The device goals specify device states that
must be achieved to satisfy an associated task goal.  Kitajima and Polson (1995) input the sequence
of task and device goals required by the model to perform a task.

The LICAI model describes the process of generating potential task goals from instructions.  In
simulating the experimental paradigm used by Franzke (1994), we assume that task goals are
generated while reading instruction texts.  However, device goals are learned during interactions
with the interface.  Thus, in exploration, the LICAI model assumes that users must generate task
goals that enable them to generate correct actions without knowledge of the device goals.

3.2 Action Planning

Kitajima and Polson’s (1995) action planning model is given a representation of a new display in
the form of a large collection of screen objects; each screen object is described by several
propositions.  These descriptions include only limited information about the identity of each object
and its appearance, including visual attributes (e.g., color, highlighting).  They are elaborated by a
stochastic long-term memory retrieval process which is taken from Kintsch (1988).
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Action planning is modeled by two construction–integration cycles.  The first
construction–integration cycle selects three screen objects as possible candidates for next action.
An important feature of Kitajima and Polson’s action planning model is that the display
representation is a detailed description of an actual large format display.  Thus, the model’s display
representation can incorporate up to 100 screen objects.  All screen objects are candidates for
possible actions.  During the initial construction phase, representations of all screen objects are
combined with the goals and the elaborated display representation to construct a network.  After
integrating the network, the model selects the three most highly activated screen objects as
candidates for the next action.

The second construction–integration cycle selects an action to be performed on one of the three
candidate objects.  During the construction phase of this second cycle, the model generates a
network with representations of all possible actions on each candidate object.  At the end of the
second integration phase, the action planning model selects the most highly activated object–action
pair as the next action to be executed.

Kitajima and Polson (1995) and Kitajima (1996) showed that the objects and action selected by
each of these processes are largely determined by two factors:

1. Strong links from the goal propositions to propositions in the network that share arguments
with the goal propositions.

2. The number of intervening propositions necessary to link goals to candidate objects or
object–action pairs.

As a result, the action planning model selects candidate objects and object–action pairs closely
related to the task and device goals.  Device goals can directly specify a screen object, and thus can
be directly linked to the screen object represented in the network.  Task goals can be linked to
screen objects through labels.

3.3 Action Planning Without Device Goals

Kitajima and Polson (1995) simulated a skilled user’s performance of a version of the task learned
by Franzke’s (1994) subjects.  Kitajima (1996) reported a series of simulation experiments that
determined the constraints on the exact representation of task that will mediate successful action
planning.

There were two findings in Kitajima’s (1996) experiments.  First, the action planning model
always performed the correct actions when given a correct device goal.  This was true even when
there was no task goal.  A device goal specifies a screen object and a desired attribute of the object
(e.g., highlighted).  The direct link between the device goal and the correct screen object caused the
action planning model to include the correct screen object in the list of the three candidate screen
objects for the next action.  When selecting an object–action pair during the second
construction–integration cycle, the model almost always chose a single action on the most
promising candidate object (i.e., the primary candidate object that was most highly activated in the
first construction–integration cycle).  The specification of the desired attribute could guide
object–action selection when there were several possible actions.

Second, Kitajima (1996) showed that the model could generate the correct actions even when it was
only given a task goal.  However, the action selection process was not robust as compared with the
case when the device goal was present.  In order for the model to make stable correct object–action
selection, the task goal had to be specific enough to establish a direct link to the correct screen
object through the screen object’s label.  A label is text that is directly associated with a screen
object.  Examples include a menu label, a button label, or an icon label.
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In summary, Kitajima (1996) showed that the action planning model could generate the correct
action sequence with no device goal.  Thus, Kitajima and Polson’s (1995) action planning model
could perform a task with a new program if we assume that users can generate required task goals.
However, there are strong constraints on the exact form of successful task goals.

4. The LICAI Model

4.1 Overview

In this section, we present a detailed description of the LICAI model.  The LICAI model simulates
a situation where a user reads instructions and then attempts to perform a task using the application.
The simulation consists of two phases: instruction taking and action planning.  The model
comprehends the instructions and stores task goals in long-term episodic memory.  The model then
retrieves task goals from episodic memory cued by successive displays generated by the
application.  The action planning processes generate the action sequence specified by the retrieved
task goal.  Goal formation and action planning are not interleaved because the application display is
not available during the reading of the instructions, and the instructions are not available when the
model is interacting with the application.

4.2 Experimental Task and Instructions

Franzke (1994) had experienced Macintosh users perform the task of creating a new graph with a
novel graphing application, Cricket Graph I2 or III3, or one of two forms of the EXCEL 3.04

interface. The graphing task was divided into two subtasks.  The first was to create a default graph
by opening a document containing data to be plotted, selecting the correct graph style (e.g., line
graph) from a menu, and assigning the designated variables to the X- and Y-axis.

Participants read the instructions and then attempted the first subtask.  The second subtask was to
edit the default line graph.  The edits were done in a specific order.  The descriptions of the edits
were terse.  Participants learned to do all subtasks by exploration.  If they had not made any
progress toward the next correct action for more than 2 minutes on a particular step, they were
given brief hints to direct their attention to specific objects on the screen like graph menu or the
legend.

Instructions used in our simulations are a simplification of the first instructions used by Franzke
(1994).  The following is the instruction text used in our simulation.  It consists of six sentences:

1. In this experiment you are going to learn a new Macintosh application, Cricket
Graph, by exploration.

2. The task you are going to perform will be presented to you as a series of exercises.
3. The data you are going to plot is contained in a Cricket Graph document, “Example

Data.”

                                                

2 CA Cricket Graph, version 1.3.2, 1989.
3 CA Cricket Graph III, version 1.01, 1992.
4 MS EXCEL, version 3.0, 1990.
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4. Your overall goal is to create a new graph that matches the example graph shown
here in the instructions.

5. Your first exercise is to plot the variable “Observed” as a function of the variable
“Serial Position.”

6. After you have created a new graph, you will modify it so that it more closely
matches the example given in your instructions.

 

4.3 Schemata for Instruction Comprehension

The LICAI model assumes that goal formation processes are analogous to Kintsch’s (1988;
Kintsch & Greeno, 1985) model for solving word problems.  The goal formation processes take a
semantic representation of task instructions as input and combine this representation with inferences
generated by highly specialized schemata to construct task goals.

Comprehending instructions to perform a task on a computer requires that the text base defined by
each of the above sentences be elaborated.  The LICAI model assumes three types of strategies for
instruction comprehension, all described as schemata (Kintsch, 1988).  The first type is a global
instruction reading schema that represents the top level strategy used by a reader in processing text
describing tasks to be performed by the reader.  All verbs with an implicit subject of the reader
[YOU] are mapped into a text base proposition of the form DO [YOU, verb, object].  The second
type is task-domain schemata.  These schemata generate elaborations of descriptions of the task to
be performed. The third is goal-formation schemata that generate additional elaborations that are
propositions specifying task goals which control the action planning process.

4.3.1 Task-Domain Schemata
Strategies defined by task-domain schemata are triggered when propositions in the original text
base or by the elaborations from other task-domain schemata satisfy certain conditions.  All these
elaborations are added to the network during the construction phase of the current cycle.  These
schemata describe the users’ specialized knowledge of the task-domain and are independent of the
application interface.

4.3.1.1 Example from Data Graph Task-Domain
We illustrate the elaboration processes performed by task-domain schemata by tracing the
elaboration of Sentence 5.  The text for this sentence is:

Your first exercise is to plot the variable “Observed” as a function of the variable “Serial
Position.”

The text base for Sentence 5 is5:

P51 EXERCISE
P52 FIRST [P51]
P53 OBSERVED
P54 ISA [P53, VARIABLE]
P55 SERIAL-POSITION

                                                

5 We followed the guideline to encode textual sentences defined by Bovair and Kieras (1985).  They provided a guide to
propositional analysis for research on technical prose.  For example, P51: EXERCISE, represents the existential.  P52:
FIRST [P51] is equivalent to FIRST [EXERCISE], representing “EXERCISE is-the-FIRST.”
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P56 ISA [P55, VARIABLE]
P57 DO [YOU, PLOT, P58]
P58 AS-A-FUNCTION-OF [P53, P55]
P59 ISA [P57, P51]

According to Kieras and Bovair (1985), P57 would be expressed as PLOT [P58].  The global
instruction reading strategy assumes that verbs that are possible actions of the reader have an
implied subject of [YOU] and that P57 is represented as DO [YOU, PLOT, P58].

The above text base is elaborated with the following two task-domain schemata from the data graph
task-domain.

Plot Schema

IF ( [AS-A-FUNCTION-OF [ARG-1, ARG-2 ])  ==>
[ROLE [ARG-1, DEPENDENT-VARIABLE],
[ROLE [ARG-2, INDEPENDENT-VARIABLE]

Put Dependent Variable Schema

IF ([ROLE [ARG, DEPENDENT-VARIABLE])  ==>
ON [ARG, Y-AXIS]

Put Independent Variable Schema

IF (ROLE [ARG, INDEPENDENT-VARIABLE])  ==>
ON [ARG, X-AXIS]

The meaning of “as a function of” in the original text is elaborated by the Plot Schema and the two
Put Schemata.  Execution of the above three task-domain schemata during the construction phase
for Sentence 5 adds the following propositions to the network.

P60 ROLE [OBSERVED, DEPENDENT-VARIABLE]
P61 ROLE [SERIAL-POSITION, INDEPENDENT-VARIABLE]
P62 ON [OBSERVED, Y-AXIS]
P63 ON [SERIAL-POSITION, X-AXIS]

At this stage, the proposition, P57, is elaborated by the following propositions.

P57-0 AND [P57-1, P57-2]
P57-1 DO [YOU, PLOT, P62]
P57-2 DO [YOU, PLOT, P63]

4.3.1.2 Example from Text Editing Task-Domain
The instructions for Franzke’s (1994) second subtask, editing the default graph, were very terse
descriptions of each edit.  An example is:
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Editing Instruction: Change the legend text to Geneva, 9, bold

This cryptic instruction has to be elaborated before the edit task can be understood and executed.
For example, “Geneva” has to be identified as the new font of the edited legend text.  We assume
experienced users of modern word processing systems have specialized task schemata called Text
Attributes Schemata that transform such terse editing commands into comprehensible instructions.

The text base for the original editing instruction is:

P90 DO [YOU, PERFORM, P91]
P91 AND [P92, P94, P96]
P92 DO [YOU, CHANGE-TO, LEGEND, P93]
P93 PROPERTY [TEXT, $, GENEVA]
P94 DO [YOU, CHANGE-TO, LEGEND, P95]
P95 PROPERTY [TEXT, $, 9]
P96 DO [YOU, CHANGE-TO, LEGEND, P97]
P97 PROPERTY [TEXT, $, BOLD]

The original text does not explicitly identify which text attributes are to have the values Geneva, 9,
and Bold.  The inferences are guided by the following Text Attributes Schema.

Text Attributes Schema:

IF (PROPERTY [TEXT, $, ARG ] & ISA [ARG, FONT-NAME]) ==>
PROPERTY [TEXT, FONT, ARG]

IF (PROPERTY [TEXT, $, ARG ] & ISA [ARG, NUMBER]) ==>
PROPERTY [TEXT, SIZE, ARG]

IF (PROPERTY [TEXT, $, ARG ] & ISA [ARG, STYLE-NAME]) ==>
PROPERTY [TEXT, STYLE, ARG]

As the results of application of the schema, the original text base network is elaborated by the
following propositions.

P93-1 PROPERTY [TEXT, FONT, GENEVA]
P95-1 PROPERTY [TEXT, SIZE, 9]
P97-1 PROPERTY [TEXT, STYLE, BOLD]

4.3.2 Task Goal Formation Schemata
Task goal formation schemata generate task goals used by the action planning processes.  We
assume two kinds of goal formation schemata, TASK Schema and DO-IT Schema. These schemata
elaborate propositions of the form DO [YOU, VERB, OBJECT] in the text base into propositions that
represent task goals.  TASK Schema elaborates propositions in task domain.  DO-IT Schema
elaborates propositions representing information about device.

4.3.2.1 TASK Schema
The following is the text base for Sentence 1 generated by standard parsing strategies and the global
instruction reading schema.  The text for this sentence is:
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In this experiment you are going to learn a new Macintosh application, Cricket Graph, by
exploration.

The text base is:

P10 IN-EXPERIMENT [P17]
P11 YOU
P12 NEW [P13]
P13 MACINTOSH [APPLICATION]
P14 APPLICATION
P15 CRICKET-GRAPH
P16 REF [P12, CRICKET-GRAPH]
P17 DO [YOU, LEARN, CRICKET-GRAPH]
P18 BY-EXPLORATION [P17]

By applying TASK Schema to P17, the following propositions are added to the current network.

TASK-10 PERFORM [S10, S11]
S10 TASK-ACTION [LEARN]
S11 TASK-OBJECT [CRICKET-GRAPH]

The propositions, TASK-10, S10, and S11 jointly define a task goal.

TASK Schema requires VERB in DO [YOU, VERB, OBJECT] be a kind of TASK-ACTION.  Examples
of TASK-ACTION would include PLOT, CHANGE, and CREATE.

TASK Schema has the following form:

TASK Schema:

IF (DO [YOU, VERB, OBJECT ] & ISA [VERB, TASK-ACTION]) ==>
PERFORM [TASK-ACTION, TASK-OBJECT, TASK-SPECIFICATION],
TASK-ACTION [VERB ],
TASK-OBJECT [OBJECT ]
TASK-SPECIFICATION [list of specifications ]

The arguments in TASK-SPECIFICATION refer to propositions that modify OBJECT.  The
propositions in the consequence part, PERFORM [.], TASK-ACTION[.], TASK-OBJECT[.], and TASK-
SPECIFICATION[.], jointly define a task goal for the action planning processes.

4.3.2.2 DO-IT Schema
In Franzke’s (1994, 1995) experiment, participants were given instructions like “Please click on
‘General Instructions’ to start the experiment.”  Observe that following such instructions involves
nontrivial inferences.  ‘Click on’ must be mapped onto the action: Single-click with the mouse
button after moving the mouse cursor to the required screen object.  ‘General Instructions’ must be
mapped onto the screen object with the label General Instructions that is on the button on the
bottom of the first page of the instructions.

When VERB in propositions in the form DO [YOU, VERB, OBJECT] is a kind of DEVICE-ACTION,
such as click, drag, and release, DO-IT Schema elaborates these propositions into propositions
representing task goals.
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DO-IT Schema has the following form:

DO-IT Schema I:

IF (DO [YOU, VERB, OBJECT ] & ISA [VERB, DEVICE-ACTION]) ==>
PERFORM [DEVICE-ACTION, DEVICE-OBJECT, DEVICE-SPECIFICATION]
DEVICE-ACTION [VERB ]
DEVICE-OBJECT [OBJECT ]
DEVICE-SPECIFICATION [list of specifications ]

The arguments in DEVICE-SPECIFICATION refer to propositions that modify OBJECT.

The instruction text used in Franzke (1994, 1995) “Please click on ‘General Instructions’ to start
the experiment” is propositionalized as follows:

P20 EXPERIMENT
P21 $
P22 HAS-LABEL [P21, General Instructions]
P23 DO [YOU, CLICK, P21]
P24 BY [P25, P23]
P25 DO [YOU, START, EXPERIMENT]

In P23, CLICK is a kind of DEVICE-ACTION, thus, DO-IT Schema is used to generate the following
propositions for representing a task goal.

PERFORM [S21, S22, S23],
S21 DEVICE-ACTION [CLICK],
S22 DEVICE-OBJECT [$] ; undefined
S23 DEVICE-SPECIFICATION [DEVICE-LABEL [General Instructions]]

There would be cases where “click” in the above text were replaced with a representation of general
actions such as “act on” that do not directly indicate device actions, whereas a screen object to be
acted on is indicated.  We assume another version of DO-IT Schema for these cases.

DO-IT-Schema II:

IF (HAS-LABEL [OBJECT, LABEL]) ==>
PERFORM [$, DEVICE-OBJECT, DEVICE-SPECIFICATION]
DEVICE-OBJECT [OBJECT]
DEVICE-SPECIFICATION [DEVICE-LABEL [LABEL],list of specifications]

4.4 Comprehension of Instruction Texts

The LICAI model processes the instructions sentence by sentence.  Global instruction reading
schema, task domain schemata, and goal-formation schemata elaborate the text bases defined by the
original sentences.  We have already described how the elaborated text base is constructed.  The
propositions representing the elaborated text base are then linked and integrated.  The result of
integration of the current network is carried over to the processing of the next sentence.  In the
following, we describe how the propositions in the elaborated text base are linked and integrated,
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and how the results of integration of the current network is carried over to the process for the next
sentence6.

4.4.1 Construction and Integration of the Network
We start with Sentence 1.  As described in Section 4.3.2, the text base representing Sentence 1
consists of 9 propositions representing the original text and 3 propositions generated by applying
TASK Schema.  These propositions shown in Figure 1 are connected by shared arguments.  For
example, P13 and P14 are linked by the shared argument APPLICATION.  We assign 1.0 as the link
strength.  In Figure 1, the nodes representing the original text are depicted in oval, and those
generated by TASK Schema are in rectangle.  The links are represented by solid lines.

                                                

6 The simulation of processes of network construction, network integration, generation of episodic memory trace, and
retrieval of a task goal was carried out by using a computer program developed by Mross and Roberts (1992).

(0.023)

(0.003)

(0.400)

(0.152)

(0.333)

(0.638)

(0.184)

(0.067)

(0.499)

(0.095)

(0.499)

(0.499)

TASK-10*
PERFORM [S10,S11]

P 1 0
IN-EXPERIMENT [P17]

P 1 2
NEW [P13]

P 1 6 *
REF [P12, P15]

P 1 8
BY-EXPLORATION[P-17]

P 1 3
MACINTOSH [P14]

P 1 4
APPLICATION

P 1 5 *
CRICKET-GRAPH

P 1 7 *
DO [P11, LEARN, P15]

P 1 1
YOU

 S 1 0 *
TASK-ACTION [LEARN]

S 1 1 *
TASK-OBJECT [CRICKET-GRAPH]

0 . 4 9 8 8
(0.249)

1 . 0 0 0 0
(1.000)

0 . 3 3 2 8
(0.111)

0 . 2 4 1 9
(0.059)

0 . 0 9 3 5
(0.009)

0 . 0 3 2 5
(0.001)

0 . 6 3 7 0
(0.407)

0 . 6 2 6 9
(0.393)

0 . 4 9 8 8
(0.249)

0 . 4 0 9 1
(0.167)

0 . 2 8 8 5
(0.083)

0 . 2 3 1 2
(0.053)

activation
(self-strength)

Pnn

(LTM link strength)

(LTM link strength)

Encodings of 
Instruction Text

Figure 1 – A network representation for the first sentence.
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The network, shown in Figure 1, is then integrated.  The integration process is simulated by first
giving a unit activation value to each of the textual nodes, P10 through P18, and then spreading
activation iteratively in the network until the activation pattern settles.  In each iteration the program
scales the activation values so that the most highly activated node becomes 1.0.  The numbers in
bold face next to the nodes in Figure 1 show the activation values after the 11th iteration.

4.4.2 Forming Episodic Memory
When the network is integrated, the results are transferred to episodic memory.  As episodic
memory is empty when Sentence 1 has been integrated, a copy of nodes in the working memory
shown in Figure 1 defines the episodic memory.  Self strength of a node in the episodic memory is
the square of the activation value of its corresponding node in working memory (see Section 2.3),
thus, for example, the self strength of the node in the episodic memory corresponding to TASK-10
becomes 0.23122 = 0.05345.  The link strength between nodes in the episodic memory is defined
by multiplying the activation values of the corresponding nodes.  Figure 1 shows the values of self
strengths and link strengths in parentheses.

4.4.3 Maintaining Coherence
After storing the result of comprehension of Sentence 1, and before starting processing of Sentence
2, the model carries over a few nodes in working memory for maintaining coherence.  This is the
requirement of the construction–integration model.  There are two factors to be considered
(Kintsch, 1988).  One concerns the establishment of textual coherence; the other concerns taking
advantage of the understanding of the task instruction that has been achieved so far.  In the
simulation, to fulfill the first the program maintains three most highly activated nodes for the next
processing cycle.  And for the second, the program carries over a single set of propositions that
originated from a task goal formation schema.  According to this rule, the program carries over
P17, P15, and P16, and TASK-10, S10, and S11, to the cycle for Sentence 2.

4.4.4 Results of Comprehending Instructions
Six sentences in Section 4.2 were processed by repeating the above processes: representing the
original sentence by propositions, applying task-domain schemata, and, if conditions were met,
appropriate task-goal formation schemata added propositions to the current text base.  The
elaborated text base was then linked and integrated.  The results of integration were incrementally
stored in the episodic memory.  The carry over rule was applied before initiating the above
processes for the next sentence.  Table 1shows task goal propositions that the task goal formation
schemata generated by comprehending the example instructions.

Table 1 –Task goals generated by comprehending the example instructions.

Sentence prop. label Task Goal  (PERFORM [ACTION OBJECT SPECIFICATION ])

1 TASK-10 PERFORM [LEARN, CRICKET-GRAPH]
2 TASK-20 PERFORM [PERFORM, TASK]
3 TASK-30 PERFORM [PLOT, DATA]
3 DO-IT-31 PERFORM [$ $ SPEC [LABEL [EXAMPLE-DATA], DOCUMENT]]

4, 6 TASK-40 PERFORM [CREATE, GRAPH]
5 TASK-60 PERFORM [PLOT, $, AS-A-FUNCTION-OF [OBSERVED, SERIAL-POSITION]]
5 TASK-61 PERFORM [PLOT, OBSERVED, Y-AXIS]
5 TASK-62 PERFORM [PLOT, SERIAL-POSITION, X-AXIS]
6 TASK-70 PERFORM [MODIFY, GRAPH]
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4.5 Goal Formation: Retrieval of Goal Schemata Instances

After processing the instructions, the model retrieves a task goal from episodic memory using the
application displays as retrieval cues.  Task goals shown in Table 1are stored in the episodic
memory.  The following is the initial sequence of displays generated during the execution of the
first subtask using Cricket Graph I.  Each display was represented as a collection of screen objects.
Each screen object is represented as a few propositions.  See Kitajima and Polson (1995) for
details.

The displays are:

1) Beginning of Task: The desk top with two icons, “Cricket Graph” and “Example
Data”

2) After Launch of Cricket Graph: A display with menu items from Cricket Graph,
“Data” and “Graph,” and labels from spreadsheet, “Serial Position” and “Observed”

3) The Variable Selection Dialog Box: A display with two pairs of “Serial Position” and
“Observed”

Dn: OBJECT-X

 Dn' : HAS-LABEL[OBJECT-X, label]

Dn" : LOCATION[OBJECT-X,location]

Episodic Memory

  Cues on Screen  

Tn
PERFORM [.]

Tn '
PERFORM [.]

T n"
PERFORM [.]

links by means of the 
argument overlap, 
strengths set to 1.0

links among nodes in 
episodic memory, 

defined by M

Figure 2 – Retrieval of task goals, PERFORM [ACTION, OBJECT, SP E
external screen representations.
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Figure 2 describes schematically how the retrieval process was simulated.  The episodic memory
network represents the outcome of comprehension of the input text, including generated nodes
representing potential task goals.  When a display appears, the display objects serve as retrieval
cues for the task goals.  The display cues are represented as a set of propositions that convey their
perceptual information, such as label, highlighting, and so forth.  For example, display (1) is
represented as seven propositions:

D-10 OBJECT-10
D-101 HAS-LABEL [OBJECT-10, CRICKET-GRAPH]
D-102 ISA [OBJECT-10, APPLICATION]
D-20 OBJECT-20
D-201 HAS-LABEL [OBJECT-20, EXAMPLE-DATA]
D-202 ISA [OBJECT-20, DOCUMENT]
D-203 CONTAIN [OBJECT-20, DATA]

When the arguments of the display propositions overlap with those in episodic memory, they are
connected by a unit strength link.  In the network integration process, the node representing the
display object itself, Dn, serves as a permanent activation source, whose activation value is always
reset to 1.0 before every iteration cycle.  The other nodes, Dn’ , ..., are initially set to 1.0.  The
nodes in episodic memory are set to their self-strengths as their initial values.  Table 2 shows the
activation values each task goal proposition (i.e., PERFORM [ACTION, OBJECT, SPEC] ) obtained as
the result of integration measured by a unit of 0.0001.

Table 2 – Activation values of potential task goals after cued retrieval by
screen objects. (unit 0.0001)

display (1) display (2) display (3)

prop. label
Beginning of

Task
After Launch of
Cricket Graph

The Variable
Selection Dialog Box

TASK-10 19 0 0
TASK-20 0 0 1
TASK-30 8 3 0
DO-IT-31 51 0 0
TASK-40 3 39 14
TASK-60 0 1 4
TASK-61 0 4 21
TASK-62 0 4 21
TASK-70 0 19 7

In display (1), DO-IT-31 was activated most highly.  It defines a task goal: PERFORM [$, $, SPEC
[LABEL [EXAMPLE-DATA], DOCUMENT]].  As the result, the action selection process would
presumably point at “Example-Data” document icon and double-click it.  The arguments in this task
goal, EXAMPLE-DATA, overlaps completely with the label on the document icon.  In addition, the
supplementary argument DOCUMENT in the task goal reinforces the link between the task goal and
the correct screen object.  Observe that a proposition defining the correct screen object, D-202: ISA
[OBJECT-20, DOCUMENT], overlaps with the task goal.  The argument DOCUMENT had significant
effect on the resultant activation pattern.  It enabled the model to focus activation on the correct
screen object.  Unless DOCUMENT were specified in DO-IT-31, a competing task goal TASK-10
would have been activated equally highly as DO-IT-31.  The argument CRICKET-GRAPH in TASK-10
overlaps completely with the label of the application icon.
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In display (2), TASK-40, PERFORM [CREATE GRAPH], was activated most highly. This task goal is
specific enough for the action-selection process to correctly attend to the GRAPH menu item.  In
display (3), TASK-61 and TASK-62 were equally activated most highly, to generate appropriate
task-goals, PERFORM [PLOT, OBSERVED, Y-AXIS] and PERFORM [PLOT, SERIAL-POSITION, X-
AXIS], respectively.  These goals do work for selecting correct actions in the given display.  See
Kitajima (1996) for more detail.

In summary, in this section we described a simulation in which a user comprehends an instruction
text and stores it as episodic long-term memory trace.  The result of comprehension is tested against
three kinds of display cues that mimic situations on which Franzke (1995) experimented and
showed that appropriate task goals were retrieved that would lead to correct actions.

5. Evaluation of the LICAI Model

We evaluate the LICAI model using data from Franzke (1994, 1995).  The LICAI model only
makes coarse grain predictions about the behavior of Franzke’s participants.  The instructions and
the schemata assumed by the model may or may not enable them to generate the correct task goal.
If participants construct and retrieve the correct task goal, the action planning will generate the
correct action sequence.  However, the LICAI model does not describe the search behavior that
occurs if the task goal construction process fails (Rieman et al., in press).  In fact, Rieman and
colleagues found that people will do some exploration of the interface even when the instruction
enables them to construct a correct task goal and they take the correct actions within 15 to 30
seconds.

5.1 Task Descriptions, Object Labels, and Number of Screen Objects

Franzke (1995) presented an analysis of her dissertation (Franzke, 1994) in which she collapsed
interfaces and tasks.  She focused on the effects of the relationships between task descriptions in
the instructions and object labels and number of screen objects that were possible targets for an
action as a function of practice.  We did not simulate all of the tasks and the interfaces used in
Franzke’s experiments.  Our goal is to show that the LICAI model can provide a qualitative account
of Franzke’s (1995) figures 5, 6, 7, and 8.

Franzke partitioned the possible relationships between a task description and the label of the correct
screen object into four categories.  The first was a perfect match between the label and the task
descriptions.  The second was that the labels were synonyms of the task description.  The third was
that an inference was required to link the two.  The fourth was that there was no label on the object.
All direct manipulation actions (like double-click to gain access to an editing dialog box) were in the
fourth category.  Franzke also used a coarser classification (good, poor) where the first two
categories are the good labels.

5.1.1 Label Following
Franzke (1995, Figure 5) found strong support for the label following strategy (Polson & Lewis,
1990; Polson et al., 1992).  The time required to perform the correct action on the first attempt at a
task was well under 30 seconds for both match and synonym categories.  Participants used overlap
between task descriptions contained in the instructions with labels on menus, buttons, and other
interface objects during exploration.  The degree of success of the label following strategy
depended on the quality of the label and on the number of competing screen objects.
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Franzke (1995, Figure 7) found an interaction between number of objects (2–10) on the screen and
quality of the label match (good, poor).  There was no effect of number of objects for good labels
and a large effect for poor labels.  A unique, good label caused a person to attend to the correct
screen object independent of the number of competing screen objects.  There was little or no effect
of practice for good labels.

These results are consistent with the LICAI model.  If instructions contained a description of either
an action or an object that matched a screen object label, those labels were preserved when the
propositional representation of the instructions was mapped into a task goal.  The links between the
task goal and the correct screen object can mediate performance of the correct action, even when
there are a large number of competing screen objects if the matching label is unique.

We did not simulate the success of synonyms in mediating successful label following.  However,
this result is consistent with the construction–integration architecture.  Common synonyms would
be retrieved during the elaboration phase and added to the network.  These synonyms would enable
the model to construct links between task goals and action representations required in the action
planning processes.

5.1.2 Direct Manipulation
Franzke (1995) found that participants had trouble discovering direct manipulation actions where
no label links the correct screen object and the task description.  Examples included double-clicking
on a title or axis label to edit it, clicking on an object in the tool bar, and drag and drop.  In a
majority of first encounters with an example of such interactions, Franzke’s (1994) participants had
to be provided hints after 2 minutes of futile exploration.  Franzke (1995) argued that participants
did not have the knowledge necessary to enable them to infer that an object could be edited by
double-clicking on it.  Thus, participants could not perform such tasks even if they generated the
correct task goals from the instructions.  The LICAI predicts such failures because of the missing
direct links between the task goal inferred from the instructions and the correct screen object.

5.2 Franzke’s (1994) Instruction Texts

Franzke used two types of instructions in her experiments.  The initial instructions enabled
participants to generate the default graph and were more detailed than the instructional text in our
simulation described in Section 4.2.  Such texts would generate multiple task goals.

The texts describing the edits to be performed on the default graph were short and telegraphic.  The
comprehension problem here was to make the inference necessary to generate a comprehensible
task description and task goals that overlap with screen object labels.  We first discuss the
comprehension of these telegraphic task descriptions.

5.2.1 Task-Domain Schemata
The critical step in performing the first subtask, creation of the default graph, is interaction with a
dialog box containing two scrolling lists for the label of variables to be placed on the X- and Y-
axis.  LICAI transformed the original problem statement “Plot Observed as a function of Serial
Position” into “Plot Observed on the Y-axis” and “Plot Serial position on the X-axis” using the
task-domain schemata described in Section 4.3.1.1.

Terwilliger and Polson (1996) found clear evidence that participants also make such
transformations. They measured the time experienced Macintosh users who have never used a
graphing problem took to interact with two forms of the variable selection dialog box. There were
two versions of task instructions. XY instructions read “create a graph with Serial Position on the
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X-axis and Observed on the Y-axis.” FN instructions read “create a graph of Observed as a
function of Serial Position.”  There were two versions of the dialog box with two scrolling lists for
variable selection.  In the XY version, the left selection list was labeled "X Axis:" and the right
selection list was labeled “Y Axis:”.  In the FN version, the left list was labeled “Plot:” and the right
list was labeled “As a Function of:”.

Terwilliger and Polson (1996) found task took less time with the XY version of the dialog box for
both XY and FN version of the instructions.  In addition, they recorded think-aloud protocols
while participants did the task.  Many participants verbalized the transformation of FN to XY.
These results strongly support the concept of task-domain schemata.  Furthermore, they support
the primary assumption of the label following strategy that the label on the interface must match
user descriptions of their tasks.

To perform the task “change the legend text to Geneva, 9, bold” in Cricket Graph I, participants
had to first double-click on the legend, which opened a dialog box.  Most participants had trouble
discovering this initial action and had to be given hints.  Once the dialog box was open, participants
had no trouble completing the task.  The dialog box contained three scrolling lists labeled font, size,
and style.  We described in Section 4.3.1.2 how the model generates the three task goals necessary
to interact with the three scrolling lists.  The model can perform each subtask specified by the
original text because the Text Attributes Schema generates task goals that link directly to a scrolling
list title and to the relevant item in the scrolling list in the edit dialog box.

5.2.2 Long Instructions and Multiple Task Goals
Franzke’s (1994) instructions for the initial subtask of creating the default graph were a more
detailed version of the instructions used in our simulation.  They included general information
about the experiment as well as details about which variables were to be placed on X- and Y-axes.
Even participants in the Cricket Graph I and III conditions had some difficulty with these initial
steps in the task.  Participant had to return to the instructions to obtain critical items of information
like variable names.

This is surprising because the relevant parts of the instructions used terms that provided a perfect
match for the label following strategy.  As the LICAI model predicts, however, these instructions
would generate multiple task goals.  Retrieving the goals is a brittle process that is heavily
dependent on the concrete display representation.

6. Models of Exploration

6.1 Comprehension-Based Models

Kintsch’s (1988) and Kintsch and Greeno’s (1985) models of arithmetic word problems are
instances of a general class of models that have been proposed repeatedly in the problem solving
and skill acquisition literature (Greeno & Simon, 1988).  These models have a comprehension-
based problem representation building component and a problem solver that ultimately generates the
problem solution.  An early example of this class of models was Hayes and Simon’s (1974)
UNDERSTAND model that processed instructions for tasks like the Tower of Hanoi and generated
a representation that was input to General Problem Solver (Ernst & Newell, 1969).

The LICAI model and Kintsch’s models of arithmetic word problems are extreme versions of this
class of models in that they have no problem solving mechanisms.  Many of the cognitive
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operations that other investigators would characterize as problem solving activities are done in the
comprehension component.  Kintsch (1988) argues that children’s difficulty with arithmetic word
problems is not in performing the basic arithmetic operations but are linguistic difficulties.  Hudson
(1983) showed that linguistic factors can have a powerful effect on problem solving success.
Students who have difficulties with word problems can be shown to have  accurate manipulation
skills, either arithmetic or algebraic.

Kitajima and Polson’s (1995) action planning model requires explicit task goals to generate correct
actions.  The form of useful goals are strongly constrained by the surface features of the interface
like labels in dialog boxes and on menus.  We assume that skilled users of an application have
specialized comprehension knowledge directly analogous to Kintsch and Greeno’s arithmetic
schemata.  These schemata enable users to construct the required, specific goal representation from
text descriptions of their task.  The more general claim that we are making is that the flexibility and
power of an expert user’s skills in using a specific application are in the problem formation
component and not in the action planning component.

6.2 Search-Based Models and the LICAI Model

The construction–integration theory was originally developed to account for reading, a form of
highly skilled behavior.  It was then extended to account for action planning in skilled computer
users (Kitajima & Polson, 1995; Mannes & Kintsch, 1991).  In contrast to the ACT-R (Anderson,
1993) or SOAR (Newell, 1990) architectures, the construction–integration theory has a primitive
control structure.  The theory has components that would enable it to exhibit search behavior:
goals, a mechanism to choose between alternative actions, and the ability to react to the
consequences of a selected action.

LICAI starts in comprehension mode reading the instructions and storing alternative task goals in
memory.  It then switches to action planning mode and attempts to execute the correct actions by
using cues generated by successive displays to retrieve task goals from memory.  LICAI cannot
interleave comprehension and problem solving.  The underlying construction–integration
architecture does not support the control structures necessary to pass control back and forth
between action planning and comprehension modes based on the current state of either
comprehension or action planning processes.

In this section we review alternative theories of exploration that do have such control structures.
We focus on IDXL, a SOAR model developed by Rieman et al. (in press).  IDXL simulates
learning by exploration of the Cricket Graph task simulated by the LICAI model, and it integrates
much recent research on learning by exploration (Howes, 1994; Howes & Young, in press;
Rieman, 1994; Rieman et al., 1994).

There are three important differences between LICAI and IDXL.  The first is grain size.  IDXL
accounts for the actual search behavior by modeling the user’s scanning of the display and
examination of pull down menus. Rieman (1994) did a detailed analysis of the actual exploratory
behavior of Franzke and Rieman’s (1993) participants who learned Cricket Graph I.  Rieman found
that participants will explore the display even when a menu with a label matching the current goal is
present. Participants exhibit a form of “iteratively deepening attention” (Rieman et al., in press).
The following menu scanning behavior is an illustration.  On first encounter, a menu is pulled
down, quickly scanned, and then the mouse cursor is moved to another screen object.  During a
later encounter, participants study menu items by highlighting and pausing on each one in
succession.
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IDXL has a primitive model of attention that focuses on one screen object at a time.  The action
planning operators include scanning, pointing, dropping pull down menus, releasing on a menu
item, and the like.  The comprehension processes operate on the currently attended-to screen object
and compare its label to a currently focused task goal.  The output of the comprehend operators are
exact match, recognize a synonym to the task word, recall, analogy, ask for instruction, and
envision consequences of an action.

The LICAI action planning processes model the same behavior at a much more abstract level.  The
model retrieves a single task goal, considers all screen objects concurrently, and generates an action
sequence associated with the task goal.  IDXL can account for situations where there is not a
perfect match between the currently focused task goal and the correct screen object label, and the
user discovers the correct action after a significant amount of search.  LICAI would simply fail to
generate the correct action sequence.

The second difference is that IDXL interleaves comprehension and action planning.  Both are forms
of progressive deepening search mechanisms, and both action planning and comprehension
operators are ordered by cost.  Scanning actions like moving the mouse cursor and pulling down a
menu have low cost.  Releasing on an incorrect menu item can be costly.  Comprehension
operators are applied to screen objects put in the focus of attention by the scanning operators.
Initially, low cost comprehension operators are applied like a test for an exact match to the currently
focused task goal.  Failure causes IDXL to continue scanning.  When the model’s focus of
attention returns to the same screen object, results of the previous comprehension operators are
recalled and lead to the application of more costly comprehension operators.  IDXL will act when
the representation of the proposed action generated by successive application of more costly
comprehension operators has generated a good match to the current task goal.

The third difference is that IDXL does not comprehend the original task instructions.  IDXL is
supplied with a task description in working memory which is a multipart and hierarchical
representation in the form of subject–verb–object format.  IDXL assumes a shifting internal focus
of attention, though it has not been modeled yet, to define a currently focused task goal (Rieman et
al., in press).

It is clear that further developments of LICAI must focus on extending the underlying architecture
with control mechanisms that enable interleaving comprehension and search.  We must develop a
principled account of the search behavior described by Rieman (1994) and simulated by IDXL.
However, the resulting models would be different from IDXL.  IDXL’s comprehension operators
elaborate the user’s representation of objects on the interface with a fixed representation of currently
focused task goal.  These operators are similar to the elaboration phase in the Kitajima and Polson
(1995) action planning model.  An extension of LICAI would be search of alternative
interpretations of the instructions that would enable the action planning mechanisms to make
progress on the task.

Franzke’s (1994) instructions for the task simulated by IDXL were similar to but more detailed than
the instruction input to LICAI in the simulation reported in this paper.  In both cases, the
comprehension processes generate multiple task goals.  Our interpretation of much of the search
behavior observed by Franzke and Rieman (1993) is that Franzke’s participants are searching
possible interpretations of the instructions to find useful task goals.  LICAI simulates a participant
who completely processes all of the instructions.  However, Hayes and Simon (1974) observed
that participants have a strong tendency to skim instructions.  They attempt to solve the problem
without all of the necessary information.  They are forced to return to the instructions, often several
times, to acquire the necessary knowledge.  Thus, we argue that part of the search behavior
described by Franzke and Rieman is caused by incomplete and/or multiple interpretations of the
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instructions.

7. Discussion

In this paper we developed and evaluated the LICAI model of display-based, human–computer
interaction that has goal formation processes and action planning processes, both based on
Kintsch’s construction–integration theory.  The goal formation processes transform initial task
descriptions into goals that drive the action planning processes and are specialized comprehension
strategies that employ task and interface specific schemata to construct the required goal.

This section describes fundamental results that come from the LICAI model and their implications
for exploration in HCI.

7.1 Comprehension Schemata for Instruction Taking

The schemata, triggered by specific features of the text base, add specialized elaborations and
inferences to the network during the construction phase of each cycle.  There are two kinds of
schemata defined in terms of their content.  The task-domain schemata elaborate the original
statement of the task description.  Examples include Plot, Put, and Text Attributes Schema.  These
schemata describe the user’s specialized knowledge of task-domain, and they are independent of
the application interface.  The goal-formation schemata (TASK and DO-IT) that generate goals used
by the action planning process.  The LICAI model claims that instruction reading is a strategic
process that uses these schemata.  The Plot and Put Schemata are supported by Terwilliger and
Polson’s (1996) results.

7.2 Label Following

The links in the network between arguments in propositions representing the goals and
propositions representing the labels on screen objects (e.g., menu items and button labels)
represent label following.  As Kitajima’s (1996) simulation showed, the action planning component
is quite rigid.  Label following is a requirement of the construction–integration architecture for
successful action planning.  Skilled action planning is driven by representations of goals that are
strongly constrained by the superficial details of the application interface and the interaction
conventions of the host operating system.

The LICAI model predicts that successful exploration will occur only under circumstances where
the instruction comprehension processes generate task goals that satisfy the label following
constraint.  However, the labels defining task goals are not necessarily present in the original
instruction texts.  The original instruction texts can be elaborated by task-domain schemata such as
Text Attributes Schema.  Thus, the LICAI model predicts the label following behavior observed in
new users of applications by Franzke (1995), Terwilliger and Polson (1996), and other
investigators.

7.3 Multiple Task Goals

Another fundamental result dictated by the underlying architecture is that users studying
instructions or an example will generate multiple task goals.  Recall that the construction process is
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bottom up; there is no control process that forces the model to incrementally generate a single task
goal to be acted on after the instructions have been processed.  Kintsch (1988) showed that
selecting the correct problem model for arithmetic and algebra word problems was facilitated by
both the situation context described in the problem text and the last question sentence of the
problem description.  For computer users interacting with an application, successive displays
generated by the application serve as retrieval cues for task goals constructed during instruction
processing.  There are no control processes that generate the proper sequence of correct task goals.

7.4 Implications for Learning by Exploration

Our results have important implications for the development of training materials (Carroll, 1990)
for interfaces that support learning by exploration (Wharton et al., 1994).  We describe how a
user’s background knowledge constrains the content of instructional materials, and we show the
mutual dependencies between interfaces that support learning by exploration and instructions that
have as their intention to facilitate this form of learning.

7.4.1 The Minimalist Instruction Paradigm
Carroll (1990) summarizes an influential research program on the design and evaluation of training
materials for application programs that led to the development of the Minimalist Instruction
paradigm.  The development of the Minimalist Instruction paradigm was stimulated by the then-
surprising result that carefully designed, detailed training and reference materials for early 1980s
versions of word-processors were unusable (e.g., Mack, Lewis, & Carroll, 1983).

However, the LICAI model predicts that comprehending and following instructions is an difficult
task, especially for individuals with limited background knowledge.  Mack et al.’s (1983)
participants were new users and therefore did not have the necessary schemata or action planning
knowledge assumed by the LICAI model.  Thus, instructions for new users must be detailed or
incorporate extensive pretraining, like the Guide Tour7 for the Macintosh interface, to explain how
to use the mouse, how to select items from menus, and the like.  Note that all of this knowledge is
incorporated in the action planning component of the LICAI model.

Carroll’s (1990) emphasis on active users and individuals’ desires to learn by exploration are well
founded (Rieman, 1994).  However, the LICAI model shows that following written instructions is
a complex task, analogous to doing arithmetic and algebra word problems.  Successful instruction
following requires the appropriate schema necessary to extract the information from the text
required to guide generation of the correct action sequence.  Thus, for the new user, following even
the most carefully prepared instructions is a difficult and error-prone process.

Carroll’s (1990) solution to the usability problems demonstrated by Mack et al.  (1983) and other
researchers was to develop the Minimalist Instruction paradigm.  The minimalist approach focuses
on users’ tasks rather than on describing a system function by function, minimizes the amount of
written materials, and tries to foster learning by exploration rather than attempting to provide
detailed step-by-step instructions.  This approach also supports error recognition and recovery.

The LICAI model can be used to develop explicit design guidelines for the content of minimalist
instructional material.  Note that the minimalist paradigm and the LICAI model have a common

                                                

7 Guided Tour is a tutorial program that comes with the Mac OS 7.0 that introduces users to the basic Macintosh interface
conventions.
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focus on the users’ tasks.  Task goals, representing what the user wants to achieve, drive the action
planning process.  Explicit, brief statements of relevant goals that can be understood by the user are
a critical ingredient in supporting learning by exploration.  Observe that many of the irrelevant task
goals generated during the comprehension of the example instructions given in Section 4.2 were
caused by attempts to provide some motivation for the user’s task.  Carroll explicitly recommends
deletion of such irrelevant material.

However, the LICAI model makes clear the kinds of constraints that must be understood in
following Carroll’s (1990) design heuristic of minimizing the amount of written material contained
in task instructions.  Brief instructions, as recommended by Carroll, solve the problem of having to
deal with multiple task goals.  However, we also showed that comprehending terse instructions,
like those used by Franzke (1995), require specialized background knowledge about the task and
the interface.

The task description, “change the legend text to Geneva 9 bold,” cannot be understood by someone
who has no experience with a modern word-processor.  Effectively minimizing the amount of
written material requires careful attention to the action and display knowledge and schemata
assumed in the target user population.  We conjecture that a minimalist version of a complete
instruction manual for a modern word-processor would have to assume that users have well
developed versions of the TASK and DO-IT Schemata described in this paper.  These schemata
represent significant amounts of background knowledge (i.e., at least 6 months experience).

Carroll’s (1990) Minimalist Instruction paradigm focuses almost exclusively on training materials.
However, there are important constraints that must be satisfied by the interface for learning by
exploration to even be possible.  The label following strategy must work.

7.4.2 Cognitive Walkthroughs
Cognitive walkthroughs are a method for evaluating interfaces for ease of learning by exploration.
The walkthrough is organized like structured walkthroughs widely used in the software
development community (Yourdon, 1989).  The cognitive walkthrough is based on a theory of
exploratory learning (Polson et al., 1992) that is a predecessor to the LICAI model presented in this
paper.

The cognitive walkthrough (Wharton et al., 1994) evaluates the effectiveness of the label following
strategy and characterizes the background knowledge necessary to infer correct actions.  For each
action required to perform a task, a designer must show that users have a correct goal that guides
selection of the next correct action.  The label following strategy is the primary action selection
guide.  The method also forces designers to specify the task and interface knowledge required by
users to infer correct actions.  For example, it is possible to select an object in a scrolling list by
single clicking on it.

The theoretical analysis presented in this paper reinforces the importance of the label following
strategy.  In addition, it points out some serious limitations of the cognitive walkthrough method.
A majority of the successful applications of the cognitive walkthrough have been on walk-up-and-
use interfaces like automated teller machines or phone-based applications with voice menus.  In all
of these situations, the interface guides the user step-by-step through the procedure.  The
instruction for each step in a task are brief and contain information necessary for the user to select
the next correct action.  Thus, the interface controls the processes involved in interleaving goal
formation and action planning.  More complicated tasks involving document preparation or the
generation of data graphs give the user far more degrees of freedom and are more complex.

In many instructional situations, users are given a paragraph or two of instructions similar in form
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and content to the example used in our simulations described in Section 4.2.  Recall that the LICAI
model generates multiple task goals when processing such instructions.  Cues provided by the
interface and/or the user must control the retrieval processes that generate the proper sequence of
task goals.  This retrieval process is not robust.  We did other simulations.  Minor changes in the
details of the wording led to the retrieval of incorrect task goals.

7.5 Label Following and Minimalist Instructions

The LICAI model presented in this paper makes clear that there is an intimate relationship between
the content of minimalist instructions and the details of user interfaces that support learning by
exploration.  The key is the label following strategy.  The LICAI model predicts that successful
minimalist instructions must guide users to form task goals containing terms that overlap with the
labels of the correct screen objects.  Such task goals enable the action planning to select the correct
action or action sequence without any previous instruction or detailed step-by-step guidance on
what to do next.  If the interface does not support label following, then the document designer will
be forced to use step-by-step instructions.  But Carroll (1990) and numerous other investigators
have shown that people are reluctant, if not unwilling, to read and follow such step-by-step
instructions.  Furthermore, following step-by-step instructions is a difficult and error prone task.

8. Conclusions

This paper has presented a model of exploration based on a cognitive architecture, the
construction–integration framework, that has no detailed model of deliberate cognition; it cannot
engage in serious search behavior.  In spite of the model’s limitations we have been able to show
that it gives us important insights into the difficulties that individuals have in comprehending
detailed technical documentation and provides further insights on the strengths and limitations of
the minimalist instruction paradigm as well as the cognitive walkthrough interface evaluation
procedure.

Another option that we explored and rejected for now was to extend the construction–integration
architecture with a SOAR-like control structure to support sophisticated search.  Living within the
limitations of the construction–integration architecture has forced us to focus on comprehension and
the processes of goal formation.  What we have shown in this paper is the kinds of background
knowledge necessary to generate the highly constrained goals that are required by our model of
action planning.  The LICAI model is closely related to successful models of word arithmetic
problem solving (Kintsch, 1988).  The major thrust of both sets of models is that following
instructions to carry out some procedure is a very difficult task and comprehension of instructions
requires specific, specialized background knowledge.
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