
 
 
 
 
 

  
Abstract—When computers are used to execute tasks, it is 

often necessary for the user to locate a target item in a menu or a 
list. For example, users of office applications select appropriate 
commands from a hierarchical menu to display dialog boxes and 
edit file or table attributes. To locate the desired information on 
the Web, users select the most appropriate candidate out of 
those presented by a search engine, and proceed through a series 
of hyperlinks that appear to be related to the task. However, it is 
commonly observed that the user does not always select the item 
on its first appearance; the user dismisses the item on the first 
visit and backtracks, and eventually selects it on a later visit. 
This paper describes a comprehension-based model, LICAI/BT, 
which is capable of simulating user’s item selection including 
backtracking and selection-on-revisit. 
 

Index Terms — Search, Cognitive model, Backtrack, 
Comprehension 
 

I. INTRODUCTION 
ELECTING an item from the interface display is one of 
fundamental actions necessary for performing tasks with 

modern graphical user interfaces. For example, the 
menu-based interaction style requires users to make a series of 
selections to get access to a dialogue box where controls for 
performing the task are provided. Similarly, the Web’s 
primary control for navigation is selecting links to the next 
page. Users navigate to pages containing desired information 
by making a series of link selections. 

We have developed a series of models that simulate users’ 
action selection processes on graphical user interfaces 
[10][8][7]. They are applied to develop a usability inspection 
method called Cognitive Walkthrough for the Web [1]. These 
models are based on Kintsch’s construction-integration 
cognitive architecture [6], which was originally developed as 
a model of text comprehension and has been applied to model 
broader human activities including action planning in HCI 
[11][7]. 

These models have successfully accounted for users’ 
behavior such as the label-following strategy [14] at a coarse 
level (the LICAI model [8]) and errors made by skilled users 
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[7]. However, due to the limitation of the adopted search 
strategy, i.e., pure forward “best” first search, they are not 
able to backtrack. Real users will redirect their search if a 
series of menu selections leads to a dialog that obviously has 
nothing to do with their task or if they reach a page that 
contains no relevant information or links. Rieman [16] 
observed how users actually implement the label-following 
strategy in detail, reporting that users do not always select the 
correct item from a menu first time, they continue their search 
examining the other possibilities, but they eventually revisit 
the menu to select the correct item. He found that a majority 
of the subjects, 90%, successfully located the correct menu, 
the Graph menu in Cricket Graph, eventually, when they 
performed the task “create a graph.” However, 85% of these 
successful subjects did not move the cursor directly to the 
correct menu item and pulled it down. A half of them found 
the correct menu after moving the mouse cursor over other 
parts of the screen. The other half pulled down and examined 
the correct menu at some point, but then moved on to examine 
other menus before returning to the correct menu.  

The purpose of this paper is to describe a mechanism that 
enables comprehension-based models to backtrack, and thus 
to simulate selection-on-revisit behavior. We add this 
mechanism to the LICAI model [8] to construct the LICAI/BT 
model. We show LICAI/BT successfully simulates the label 
following strategy at a fine level as observed by Rieman [16]. 
Although backtracking is trivial for the other cognitive 
architectures, such as Soar [12] or ACT-R [1], it is not for the 
comprehension-based construction-integration architecture. 
Soar creates a new problem space on encountering an impasse. 
ACT-R represents backtrack as production rules. 

A. Pure forward “best” first search modeled by the 
construction-integration architecture 

The construction-integration architecture assumes that 
comprehension is done by two phases; the construction phase 
that activates knowledge in long-term memory relevant to the 
currently processed sentence and connects the activated 
knowledge with the current sentence to form a network, and 
the integration phase that derives contextually appropriate 
meaning of the sentence as an activation pattern of the 
constructed network by spreading activation from the part of 
the network representing the reading context. 

Within the construction-integration architecture, action 
planning is modeled as attending to an object (e.g., menu title, 
menu item, button, hyperlink, etc.) and acting on the object 
(e.g. press and hold, single clicking) in a way consistent with 
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the current context. The model acts on the object that it 
perceives to be closest to its current goal. Distance is 
computed by a spreading activation process that takes into 
account both the number of links between the goal and a 
screen object, and the strength of those links.  

At each step of the action planning process, the model will 
select the closest object even when the available targets for 
action are objectively very distant from the goal. There is no 
notion of threshold in the model that will enable it to reject all 
the current alternatives and try something else. The model 
does pure forward best first search by selecting the closest 
object during each step of the task. 

II. COMPREHENSION-BASED MODEL OF ACTION PLANNING 
WITH BACKTRACKING CAPABILITY 

In this section, we start by reviewing a comprehension based 
model of exploration, LICAI, an acronym for the LInked 
model of Comprehension-based Action planning and 
Instruction taking [8], which simulates comprehension of task 
instructions and hints, the generation of goals, and the use of 
these goals to discover correct actions by exploration. We 
show how LICAI does pure forward best first search. We then 
introduce a mechanism that enables us to account for 
label-following at a fine level with such activities as 
backtracking or rejecting and then revisiting and selecting the 
correct menu item.  

A. Outline of LICAI [8] 
This section outlines the LICAI model, taken verbatim from 
[9]. 

1) Goal Formation 
LICAI’s action planning processes contain limited 
capabilities to discover correct actions by exploration. These 
processes are controlled by goals generated by 
comprehending task instructions and hints. LICAI assumes 
that goal-formation is a specialized form of the normal 
reading process in which task specific strategies generate 
inferences required to guide goal formation. LICAI’s 
goal-formation process is derived from Kintsch’s [5][6] 
model of word problem solving. 

Kintsch’s model takes as input a low-level semantic 
representation of problem text, the textbase, and processes it 
sentence by sentence. The result is a problem model. 
Construction of the problem model makes extensive use of 
comprehension schemata which elaborate the original text 
representation with problem domain specific inferences. 

LICAI incorporates comprehension schemata that 
transform relevant parts of the textbase for the task 
instructions and hints into goals that control the action 
planning process. Propositions that describe actions on task 
objects in the textbase are recognized and further elaborated 
by specialized task domain schemata to generate a more 
complete description of a task. For example, consider a 
graphing task in which the user was given the instruction, Plot 
a variable named ‘Observed’ as a function of a variable 
named ‘Serial Position.’ LICAI transforms this task 
description into the propositional representations of two 

sentences. 1) Put ‘Observed’ on the y-axis, and 2) Put ‘Serial 
Position’ on the x-axis. The representations of the last two 
sentences are then transformed into task goals that control the 
action planning process. Terwilliger and Polson [16] 
demonstrated that users actually perform this transformation. 

 
2) Action Planning 

The heart of LICAI is the action planning processes. LICAI 
assumes that successful action planning involves linking 
propositional representations of a goal (e.g., create a new 
graph), the screen object to be acted on (e.g., the Graph 
menu), and an action to be performed on that object (e.g., 
press and hold). The most critical of the three links is the link 
between the goal and the correct screen object. This link can 
be retrieved from memory or generated by an exploration 
process. 
 
Skilled users: Kitajima and Polson [7] developed a version of 
the action planning process used by skilled users of an 
application. This model represents an arbitrary sequence of 
actions required to perform a task as hierarchical goal 
structure that is retrieved from long-term memory and used to 
generate the actions. A task is decomposed into a sequence of 
task goals. Task goals refer to actions (e.g., edit) on a task 
object (e.g., graph title). Each task goal is linked to an ordered 
sequence of one or more device goals. Each device goal 
specifies a unique object on the screen (e.g., the Options 
menu, the graph title) and the state of the object (e.g., 
highlighted) after it has been acted on. Thus, skilled users 
retrieve the critical links between goal and screen object from 
memory. However, Kitajima and Polson [7] did not describe 
how such goal sequences are learned or how they are retrieved 
from memory. 
 
New users: When a new user of an application attempts to 
perform a task for the first time, Kitajima and Polson [8] 
assumed that they have a task goal but not the device goals. 
LICAI can simulate exploration by generating the correct 
actions for a novel task without the device goals if the task 
goal can be linked to correct screen objects by LICAI’s action 
planning processes. 

A task goal is a proposition with two arguments describing 
a task action and a task object (e.g., hide legend). If a correct 
object on the screen has a label representing either one of 
these concepts (e.g., a menu labeled “hide”), the 
representation of the object will be linked to the task goal. 
LICAI will retrieve the correct actions (e.g., move the cursor 
to the object and press-and-hold) on this object from 
long-term memory, completing the necessary links to 
generate actions. We and numerous other researchers have 
called this linking process the label-following strategy 
[3][4][8][13][16]. Thus, the critical links can be generated to 
mediate successful exploration. The label-following strategy 
is the only method that LICAI has for learning by exploration. 
If there is no direct link between the task goal and the correct 
object, users must be given a hint. 



 
 
 
 
 

B. Example task and anticipated users’ behavior 
Let’s consider a situation where a user wants to hide the 
legend of a chart created by Excel. The correct sequence of 
actions is as follows: 

 
Interacting with menu to open the dialog box for the task; 
A1: Move the mouse cursor to the “Chart” menu-bar item 

and hold the mouse button down (Figure 1). 
A2: Move the mouse cursor to the “Chart Options …” 

pulldown menu item and release the mouse button. 
(The Chart Options dialog box appears.) 

 
Interacting with dialog box to performing the task; 
A3: Move the mouse cursor to the “Legend” tab in the 

Chart Options dialog box and click (Figure 2). 
A4: Move the mouse cursor to the “Show legend” check 

box and click. 
A5: Move the mouse cursor to the “OK” button and click. 
 
For the initial part of the task, we anticipate what the user 

would perform by extrapolating what Rieman [16] had 
observed when he had his subjects perform “create a graph” 
task with a graphing application, Cricket Graph: users would 
take the following sequence of actions; pull down the Chart 

menu, and then look at all of the items, dismiss the menu, and 
search other menus, and eventually return to the Chart menu 
and select Chart Options …. As mentioned previously, the 
label following strategy is the linking process of the goal and 
the correct object and action. In this situation, the linking 
process had completed eventually but it was not obvious for 
the first time when the users first pulled down the Chart menu 
item. 

For the second part of the task, users would not have any 
difficulty performing the task since the labels of the correct 
objects for the actions, “Legend” and “Show Legend,” 
respectively, partially matches the task description, “hide 
legend.” Thus users would easily establish the links between 
the goal and the correct objects, and retrieve the correct action, 
move the mouse cursor to the “Legend” tab and single-click, 
and move the mouse cursor to the “Show legend” checkbox 
and single-click. For the latter action, the knowledge, “HIDE 
is an antonym of SHOW,” would be retrieved from long-term 
memory and reinforce the link between the goal and the 
correct object. 

C. LICAI’s simulation 
Before introducing a backtracking and selection-on-revisit 
mechanism, we illustrate how LICAI simulates the menu 
selection steps in the example task. We ran a computer 
program that implements the LICAI model (see [7][8] for 
detail) to simulate the pulldown menu selection process as 
shown by Figure 1. The program constructed a network 
including the goal, screen objects, and the nodes representing 
the action of attending-to respective screen objects, e.g., 
attend-to “Chart Options pulldown menu item,” and 
integrated the network by means of spreading activation 
process. The most highly activated “attend-to” node was 
selected as the next action to take, e.g., attend-to Chart 
Options.  
 
Selecting menu item with poor label: When the pulldown 
menu in Figure 1 were input in the simulation program along 
with the goal, it activated the correct attend-to node 
associated with Chart Options pulldown menu item highest. 
However, its activation value, 0.216, was slightly higher than 
that of the similar menu, 0.201 for Chart Type, and that of the 
irrelevant labels, e.g., 0.176 for Add Data. Thus LICAI barely 
selected the correct pulldown menu item for the first time it 
opened the Chart pulldown menu. 

It should be noted that in this simulation we assumed that 
critical pieces of knowledge for connecting the concept, 
“legend” and “chart options,” were retrieved from long-term 
memory and helped establish links between the goal and the 
correct object. Otherwise, the correct menu would have been 
regarded as irrelevant and LICAI would have selected a 
wrong menu. In fact, in a simulation run without the bridging 
knowledge, LICAI selected Add Data pulldown menu item.  

In summary, LICAI selected the correct pulldown menu 
item for the first time it encountered the menu item, which is 
not consistent with what real users would perform for the task. 
 

Fig. 1.  Excel menu bar and Chart pulldown menu. 
 

 
Fig. 2.  Chart Options dialog box. 

 



 
 
 
 
 
Selecting menu item with good label: It is suggestive if we 
simulate a perfect matching case and compare the result with 
that of the poor matching case just described. In order to 
simulate a perfect matching case, we added an ideal but 
hypothetical correct object to the Chart pulldown menu, 
which had the label “Hide Legend.” A simulation run showed 
that the activation value of the hypothetical object was 0.306, 
which was extremely greater than that of the real correct 
object and those of the rest of irrelevant objects; the activation 
value of Chart Options was 0.144, and that of the irrelevant 
object was e.g., 0.121 for the Add Data menu item. In this 
case LICAI selected the hypothetical correct object, which 
would be consistent with real users’ behavior. 
 
Summary: LICAI could perform the task successfully, not 
only in the good matching case but also in the poor matching 
case, by selecting the object closest to the goal using the 
label-following strategy. However, this is not a correct 
description of users’ behavior as we mentioned previously. 
LICAI’s implementation of the label-following strategy is 
fine for the good matching case but not for the poor matching 
case. 

D. LICAI/BT: LICAI with backtracking capability  
This section introduces a set of knowledge that enables LICAI 
to backtrack.  

1) Hypothetical device goal 
As we have seen in the previous simulation, there was a huge 
difference between the patterns of activation values for the 
attend-to nodes depending on the quality of labels associated 
with the correct object. In the poor label case, the superiority 
of the activation value of the correct object was very small, 
whereas in the perfect matching case, it was tremendously 
huge. We assume that the user starts exploration of the 
interface for an object with a perfect matching label. However, 
it is not sure to be present but is hypothetical. 

The target object can be regarded as a kind of device goal 
as described in the skilled user model [7]. It is associated with 
a hypothetical screen object, <Object-X>, having a label that 
matches the current task goal. We assume that the user 
performs action selection processes with the guidance of a 
task goal and a hypothetical device goal retrieved from 
long-term memory, which is defined by: 

 
Hypothetical Device Goal (HDG): Expects to see a 
hypothetical screen object <Object-X> that has the 
labels identical with the representation of the current task 
goal. The <Object-X> should be found on the screen 
with varying degree of strengths of belief – we denote it 
as Wb. 
 
2) Backtracking skill 

The hypothetical screen object can be attended-to as real 
objects. However, we assume that the hypothetical object is 
associated with skills, i.e., procedural knowledge, necessary 
to perform backtracking, e.g., close a dialog box, close a 
pulldown menu and select another menu, and so on. Thus, if it 

is attended-to, the user will perform one of these actions 
suitable for the particular situation.  

 
3) Belief strength 

We assume that the degree of belief of finding the 
hypothetical object should vary depending on the situation of 
interaction. For example, when selecting an item from 
menu-bar, it is unlikely to find a good matching label, thus the 
belief should be weak. On the other hand, when selecting a 
pulldown menu to issue a command, it is anticipated to find a 
good matching label. The stronger the belief, the more likely 
the hypothetical object is attended-to and the model 
backtracks. Thus, the model’s behavior should vary according 
to the assignment of belief values. 
 

4) Strategic control of belief strength 
It is necessary to have knowledge to assign a belief value to 
each action planning step. We assume that the strengths of 
belief should be controlled strategically. For example, when a 
user is searching for a command in a two-layered hierarchical 
menu, he/she would anticipate that the degree of consistency 
of the representations of the objects with the task goal should 
become larger as the deeper the objects lay in the menu 
hierarchy. Thus, a strategy that might be effective for 
discovering the correct object for the command in this 
circumstance without issuing wrong commands would be 
stated as follows: 

 
Strategy for menu item selection: Start with a small Wb 
for menu-bar item selection, followed by a large Wb for 
pulldown menu item selection. If backtracking occurs, 
relax the belief strength and perform pulldown menu 
item selection with a moderate Wb. 

E. Simulation of the example task 
This section shows LICAI/BT’s simulation of the pulldown 
menu selection process. The following is assumed as the 
strategy for menu item selection: 
 

1. Select menu-bar item, e.g., Chart, with Wb = 0. Since 
the menu-bar item cannot be the target object, there 
should be no belief of finding the target item at the 
men-bar level. 

2. Select pulldown-menu item with Wb = 4, representing 
strong belief of finding target object at that level. 

3. If there is a real target object that has almost perfect 
matching with the current task goal, the model would 
select it. Otherwise, the model would select 
<Object-X>. This is associated with the action of 
moving the mouse pointer to the next menu-bar item, 
e.g., Window, and a new pulldown menu is opened. 
The model continues on with the same belief strength. 

4. When all the menu-bar items are examined and no real 
object is selected, the model relaxes the strength of the 
belief, Wb = 2, and repeats the same procedure. 

 
Figure 3 illustrates the network constructed for the 



 
 
 
 
 

simulation. The strength of belief was set to 4. At the top layer, 
the task goal and the hypothetical device goal, HDG: 
(expect-to-see DISPLAY-OBJECT), are represented. The 
hypothetical device goal is linked to two nodes at the second 
layer that represent associated features of the hypothetical 
device goal, HDG_Label: (is-labeled-by DISPLAY-OBJECT 
HIDE LEGEND) and Belief: (believe-to-find-display- 
object-as <Object-X>), respectively. HDG and HDG_Label 
are connected with Belief by links with strength Wb. The 
nodes at the third layer represent the seven pulldown menu 
items, and each is linked to a node that represents its label at 
the fourth layer. The label nodes are connected each other and 
the task goal considering the degree of semantic similarity 
between them. The nodes at the fifth layer represent 
knowledge retrieved from long-term memory for elaborating 
the concepts related to the task, i.e., Legend, Options, and 
Chart. The nodes that represents “attend-to a real object” or 

“attend-to a hypothetical object” are located at the bottom 
layer. Each attend-to node is labeled with an identification 
number Znnn provided by the simulation program. In the 
figure, Z138 represents “attend-to <Object-X>,” and Z141, 
the correct action, “attend-to Chart Options.” The thickness of 
line is proportional to the link strength. The nodes with red 
color serve as activation sources. 

Figure 4 shows the activation value of each attend-to node 
finally obtained as a function of the strength of belief, ranged 
from 1 to 4. The rightmost plot corresponds to a case where 
the pulldown menu item that exactly matching the 
representation of the task goal be included in the pulldown 
menu. As can be seen in the figure, the perfectly matching 
“Hide Legend” pulldown menu would have been selected, if it 
should have existed, even when a strong belief value, Wb=4, 
had been used. 

In Figure 4, the open circles and the filled circles denote the 
activation values of the nodes representing “attend-to Chart 
Options” and “attend-to <Object-X>,” respectively. As can 
be read from the figure, when the model first examined the 
pulldown menu items with a strong belief value, Wb=4, 
“attend-to <Object-X>” activated highest, meaning that the 
pulldown menu would be dismissed. Though we do not show 
in this paper the results for the other pulldown menus, we had 
the same results. 

After scanning all the pulldown menus, LICAI/BT relaxed 
the strength of belief to Wb=2, and starting with the Chart 
pulldown menu, it selected “attend-to Chart Options.” 

 
The full trace of the simulation including backtracking and 

selection-on-revisit acvtivities is summarized as follows: 
 
1. Attended-to Chart menu-bar item with Wb=0, moved 

the mouse cursor to it, and single-clicked the left 
mouse button; 

2. Attended-to <Object-X> with Wb=4, single-clicked 
the left mouse button to close the pulldown menu; 

3. Repeated the same sequence for the rest of the menu 
bar items; 

4. Attended-to Chart menu-bar item again with Wb=0, 
moved the mouse cursor to it, and single-clicked the 
left mouse button; 

5. Attended-to Chart Options pulldown menu item with 
a reduced belief value, Wb=2, moved the mouse 
pointer to the attended-to object, and single-clicked 
the mouse button; 

III. CONCLUSION 
We presented in this paper that LICAI/BT can simulate the 
label following strategy as real users implement it in real 
situations by incorporating a hypothetical device goal and a 
set of strategic knowledge to utilize it into LICAI [8]. LICAI 
has only coarsely simulated the label-following strategy by 
adopting pure forward best first search strategy. The 
hypothetical device goal and its implementation knowledge 
are crucial to implement the label following strategy 
appropriately in various situations. 

Figure 3.  The constructed network for the hide legend task with the 
belief strength of 4. 

 



 
 
 
 
 

Users’ behavior is guided by task goals and hypothetical 
device goals for new situations as simulated by LICAI/BT; 
whereas it is guided by task goals and real device goals for 
skilled performance as modeled by [7]. We see a beautiful 
parallel in these models in terms of the knowledge to be used 
to guide performing by exploration and skilled performance, 
which is unique to comprehension-based models.  
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Figure 4. Simulation results. 

 


